THE ELEMENTS
 FOUR BOOKS.

BOOK I.

Of the original of our ideas, their various divisions, and the manner in which they contribute to the increase of knowledse ; with a philosophical account of the rice, progress, and nature of human language.

> BOOK II.

Of the grounds of human judgment, the doctrine of propositions, their use in reasoning, and division into selfevident and demonstrable.

BOOK III.
Of reasoning and demonstration, with their application to the investigation of knowledge, and the common affairs of life.

BOOK IV.
Of the methods of invention and science, where the sevcral degrees of evidence are examined, the notion of certainty is fixed and stated, and the parts of knowledge in which it may be attamed, demonstrated at large.
designed particularly for Toung. Gentlemen at the Uriversity; and to prepare the way to tee study of philosophy and the mathematics.

BY WILLIAM DUNCAN, Professor of Pbilosophy in Marishal College, Aberdeen.

Doctrina sed vim promovet insitam ; Rectique cultus pectora roborant Hor.

ALBANY:

PRINTEDFOR WHITING, BACKUS \& WHITING. SOLD BY THEM AND WHITING, GOODRICH \& CO. UTICA, AND WHITING, BEMIS \& CO. YORK, UPPERCA:ADA.

TO THF

RIGIT HONORAELE

STEPIEN POYNTZ, Lse.

SIR,

IF I take this onporimity of pablis'ing to the world tioce estecm I has for a chant, to which kaming

 homer:; you, and what looks tron the fileriy of pu:tise the follow ing work moder yner patwhet, as ate of the lrapy incidents of his life.
from the fire monend 1 farned the sh sign of it, 1 had it in my hougits to addre, s it to you; : ind indeed what could be more natural, then that I slictid be ambitious of insoribis; a tratise upon tixe a!e-

 hat, as wall :as :.In the other bramines ci human labriing?

Jour great abilities in every hiad, have de cuverly recomenended you is the notice of your biticul count:", and occasioned yombeng couted asdimformed to ancept those high mite, of state, which elles pursue vish so much eareeness, and finci it ciinu diticult wobtain, by all the arts and etcaarors of aminis, Nor have your tathi, been co:"exl

 tretent aplanse, s." your wise and ehe rominc.
 abroad.

But the qualities of a great statesman are not those alone by which you have rendered yourself illustrious. The virtues of private life no less actuate and adorn your whole behavior, and add a new dignity to the high station to which your merit has raised You. Affability, complacency of manners, and, above all, an extensive humanity and benevolence, which takes pleasure in doing good, are distinguishing parts of your character, and have contributed no less than your other extraordinary endowments, to that universal acknowledgement which is paid you by your country.

That you mä loing live to be an ornament and blessing to the nasion and to enjoy the pleasure which arises from a consciousness of the esteem and approbation of ail good men, is the sincere and hearty praye: ci,

SIR,

İar moni olliged, and most obedient
Humble Servant,
w. DUNCAN.

[5]

INTRODUCTION.

Sec. I.—Importance of the Knorvledge of Oursetves.

OF all the human sciences, that concerning man is certainly the mosi worthy of man, and the most necessary part of thinwledge. We find ourselves in this world surrounded with a varicty of objects: we have powers and faculties fitted to deal with them, and are happy or miserable in proporion as we k:w, how to frame a rieht judgment of things, and shape our actions agreeably to, He circum ances in which we are placed. N., study, thereforc, is more important than that which inerollices us to the knowledge of ourselves. Hereby we bacome acquainte! with the evtent and capacity of the human mind; and learning to distinguish what objects it is suited to, and in what manner ir mut procuel in order to compass it: ends, we arrive be desress, at that juctnoss and truth of understanding, which is the great perfection of a rational being.
S:r. II - Different gralations of Perfotion in Things.
If we look attentively into thiner, and survey them in ther full extent, we see the in risins one above another in variens degrecs of eminence. Among the inanimate parts of matier, some exhibit nothing, worth; our attention : their pats seem as it were jumbled together by mere chance, nor can we discover any bunty, order, or resularity in their conumsition. In others, wr dicern the fines: arrangement, and a certain clegance of contexature, that makes us affix to them a notion of worth and excellence. 'Whit. metals, nd precions stomes. are conccived as far surpassing these whtormed nasere, of earth, tha lie csury where e: posed to view. If we trace nature onward, and pursue her thrught the vegetable and animal kingloms, we find her still muldying her perfections, and ising, by a just gradation, from mere muchinism to perception, and from perception, in all its various degrees, to reason and understanding.

> Sec. MII.Uscfulness of C'uluure, and harticularly of the S'udy of Logic.

But though reasnn be the boundary by whirh man is distinguished from the other cratures hat surround him, yet we are
far from finding it the same in all. Nor is this inequality to be whally ascribed to the original make of men's minds, or the difference of their natural endowments. For if we look abroad into the several nations of the world, some are over-run with ignorance and barbarity ; others flourish in learning ar:d the sciences ; and what is yet more remarkable, the same people have in difierent ages, been distinguished ty these very opposite characters. It is therefore by culture, and a due aj;plication to the powers of our minds, that we increase their capacity, and carry human reason to perfection. Where this method is followed, knowledge and strength of understand. ing never fail to ensue; where it is nelected, we remain ignorant of our own worth; and those latent qualities of the soul, by which she is fitted to survey this vast fabric of the world, to scan the heavens, and search into the causes of things, lie buried in darlness and obscurity. No part of knowledge, therefore, yields a fairer prospect of improvement, than that which takes account of the understanding, examines its powers and faculties, and shews the ways by which it comes to atain its various notions of things. This is proferly the deign of L ge; which may be justly sty led the instury of the human mini, inasmuch as it traces the progress of our knowledre, from our first and simple perceptions, through all their different combinations, and all those numerous deductions that result frem variously comparing them one with another. It is thus that we are let into the natural frame and contexture of gur owin minds, and learn in what manner we ought to conduct our thoughts, in order to arrive at truth, and avoil error. We see how to build one discovery upon another, and, by preserving the chain of reasonings uniform and unbroken, to pursue the relations of things throus: all their lab rinths and windings, and at length exhibit them to the viow of the soul, with all the adrantages of light and conviction.
Sec. IV.- Oherations of iie Nime.

Eat as the understanding, in advanoing frm one part of knowleje to another, proceeds by a jut gradation, and cxcris vainus acts, according to the diñ-nat yrogress it has made, logicians have been careful to note these several steps, and have distinguished bem in their writins: by the name of the operations of the mind These they niake four in numier, and agrecing to tiat have dirided the " \because hole sysiem of l-gic in:o fur parts, in which teese acts are severally explainett, and tix conduct and procedur a of the mind, in its difer-
ent stages of improvement, regulated by proper rules and observations. Now, in order to judge how far logicians have frdlowed nature, in this distinction of the powers of the linacrstanding, let us take a short view of the mind, and the Hanner of its progress, according to the experience we have of it in ourselves, and see whither the chain of our own thoughts w ill without constraint lead us.

> Sec. V.-Percchtion.

First, then, we find ourselves surrounded with a varicty of oljects, which, acting differently on our senses, convey distinc: inupressions into the mind, and thereby ruuse the attention and notice of the understanding. By reflecting, too, on what fasses within us, we ijecome sensible of the operations of our an minds, and attend to them as a new set of implissions. But in all this there is only bare comeciousness. The mind, without procecding any further, takes notice of the impressions that are made upen it, and views things in orter as they fresent thenselves one alier another. I his attention of the understanling to the objects acting upo it, whereby it beconnes semsible of the impressions the mate, is called, by logicians, percoption; and the notices thasobes, as they exist in the mind, and are there trasureal up to be the materials of thinking and knowledge, ar: ateringiisitu by the nante ol iticus.

> Sec. VI.-Iudsment.

But the ntind does not always rest satisfied in theb are view and contemplation of its ideas. It is of a more active and. dusy nature, and likes to be atsembling then together, and e.mparing them one with another. In this complicated viour of things, it readily discerns, that some arres and others disagree, and joins or seprates then accomin, to this perieption. That, upon conparing the idea of two addel to two, with the idea of fiur, we, at first glance, perceive their agreenincut, and thereupon pronounce that two and two are equal t., tour. Again, that whice is not black, that five is less than meven, are truhs ta which we inmuediately assent, as soon as we conpare these idicus together. This is the first and simplest act of the mind, in cetermining the retation of chings, when, by a bare attention to its own ideas, comparing any two of then togellar, it can at once see low far they are conmicted or dinjuicl. The knowledge thence derived is callede intmitive, as roquiting no pains or examination; and the act
of the mind assembling its ideas tozether, and joining or disjoining them, according to the result of its perceptions, is what Logicians term judgment.

Sec. VII.—Reasoning.

Intuition affords the highest degree of certainty ; it breaks in with an irresistable light upon the understanding, and leaves no room for doubt or hesitation. Could we in all cases, by thus putting two ideas together, discern immediately their agreement or disagrcement, we should be exempt from error, and all its fatal consequences. But it so happens, that many of our ideas are of such a nature, that they cannot be thus examined in concert, or by any immediate application one to another; and then it becomes necessary to find out same other ideas that will admit of this application, that by means of them we may discover the agreencent we search for. Thus the mind wanting to know the agreement or disagreement in extent between two enclosed fields, which it cannot so put together as to discover their equality or inequality by any immediate comparison, casts about for some intemediate idea, which, by being applied first to the one, and then to the other, will discover the relation it is in quest of. Accordingly it assumes some stated length, as a yard, \&c. and measuring the fields one after the other, comes by that means to the knowledge of the agreement or disagreement in quescion. The intervening ideas made use of on these occasions, are called proofs; and the exercise of the mind in finding them out, and applying them for the discovery of the truths it is in search of, is what we term reasoning. And here let it be observed, that the knowledge gained by reasoning is a deduction from our intuitive perceptions, and ultimately founded on them. Thus in the case before mentioned, having found by measuring, that one of the fields makes three-score square yards, and the other only fifty-five, we thence conclude, that the first field is larger than the second. Here the two first perceptions are plainly intuitive, and gained by an immediate application of the measure of a yard to the two felds, one after another. The conclusion, though it produces no less certain knowledge, yet differs from the others in this, that it is not obtained by an immediate comparison of the ideas contained in it, one with another, but is a deduction from the two preceding judgments, in which the ideas are severally compared with a third, and their relation thereby discovered. We see, therefore, that reasoning is a much more complicated act of the mind
than simple judginent, and necessarily presupposes it, as being ultimately founded on the perceptions theicce şained, and implying the various comparisons of them one with another. This is the great exercise of the human faculties, and the chief instrument by which we push on our disceveries, and enlarge our knowledge. A quickness of mind to find out in.termediate ideas, and apply them skilfully in determining the relations of things, is one of the principal distinctions among men, and that which give some so remarkable a super rity over others, that we are apt to look upoa theniaz creaturis of another specics.

Sec. VIII- 19 :
Thus far we have traced the proprece of the mind in thinking, and seen it rising be natural and cavy steps from its sirst and simpleperceptione, to the excr ise of its higiest and mot distiaguishing faculty. Let us now view it in another light, as enriched with knowledge, and stried with a variety ct ciscoveries, acquired by a due application of its natural powes. It is obvious to consider it in the se circumstances, as taking a general survey of its whole str of inteilectual acquisitions, disposing thein under cortain heads and classes, and tying thein together, according to those connexions and dependet.cies it discerns between them. It of.en happens, ill carrying an our enquiries from subject th stiject, that we stumble upon unexpectev truths, and are encountered by discoveries which our present taain of thiaking gave no prospect of bringing in vur way. A man ol clear apprehension, and distinct reason. who, ificr due scarch and examination, has mastered any part of knowledge, and even made : mportant discoveries in it, beyond what he at first expected, will not suffer his thoughts to Dic. jumbled tegrether in the same confused manner as chatue -ficted them; be will be for combining them into a regular system, where their murual dependence may be easily traced, and the parts seem to grow one out of another. This is that operation of the mind, known by the name of disposition or methol, and cumes in the last in order, according to the division of the logicians, as presupposing some tolerable measure of knowledge, before it can have an opportunity of exerting itsulf in any extensive degree.

Sec. IX.—Percefinion and Judgment termo of a very extcnsive sisnification.
We see, then, that this fourfold distinction of the powers of the mind, in perception, judgment, reasoning, and disposition, as well as the order in which they are placed, have a real foundaion in natur, and arise from the method and procedure of our own thoughts. It is true, there are many other actions and modifications of the understanding, besilles those abcve mention-1, as believing, doubting, assenting, \&c. but these are all implied in the act of reasoning, in the like manner, as compreheinding, abstractins, remembering, may be refernd so the first reveration of the mind, or perception. This will appear more tully in the sequel, when we come to hande the several parts of loric separately : at present we shall content ourselves with this feneal account of things; only it seems necessary wh onerse, that firefilion and juigment, in the propriety of the Engli in tongue, have a much more extensive sisnification tian logicians commonly allow them. We nur only perceive the ideas in ou: own minds, but we are said also to perceive their agremant or dic..rreblent ; and hence arise the common phrases of intuitive perceptions, perceptions of truth, and of the justness of argumenis or procts; where it is manifese, th the word is aphind not only to ow judgments, but :lso t" our reaswings. in a word, whatever cemes under tha view of the mind, so as to be distinctly represented and takin notiee i, whether an idea, propesition, chain of rea oning, or the order and connexion or thanes, is thereby radered ain o'ject of percep ion, and gives emplyment to this first and most simpl: of ow faculties. In lihe manner, the word judgmort, is seldum, in wamon dincourse, confined to obvious and bilf-cident ruths. It rather signifies those conjectures and ouesses that we form, in cases which admit not of unduclect certainty, and where we are left to derernine by comparing the various probabilitits of things. Thus a maia $c i$ sarsefiry and penctration, who sees far into the humours and pasaions of mant ind, and bklom mistakes in the pimion: he franes of characters and acions, is said to juilg: $\because \mathrm{Cl}$!, or thini judiciously. For these reasons, it ne:ght nor be im. p per tochange the common names of the two firs. rewa. t : of the binid, calling the one simple afyemouen, ard the other intuition; which wo words seem bet er to express heir racure, and the mamer in which they ane conversani about their seviral ol,
there is any the least diference, is in a peculiar manrer necessary in a treatise of logic, as it is the professed design of that science, to teach us how to form clear and distinct noticins of things, and thereby avoid being misled by their similitude or resemblance.
Scc. X.-Logic divided into Four Parts. Its Usefulness and Extellency.
Having thus given a general idea of the four operations of the mind, and traced their connexion and dependence upon one anolber, I would next discreve, that in consequence of this diviston of the powers of the understanding, logic is also divided into four parts, which treat severally of these acts, and give rules and directions for their due conduct and regulation. The operations themselves we have from nature; but how to exert them ju, search of truth, is a knowledge that may be acquind by study and observation. It is certain, that we mect with false reasonings as well as just. Some men are distinguished by an accuracy of thinkser, and a happy talent of unravelling and throwing light upon the nosst obsetm and intricate subject.. Others confound the casiest speculatus; their undersan iings secon to be formed awry, and chor are incopable of either conceiving clearly themselves, or making their thoughts intedigible to ohers. If then we set ourscives car fully to whserve what it is that mahes the one succecd so well, and hess the others come to misarry, these remarks will furnioh us with an art of the highest use and excellency in the conduct of life. Now thi, is the precise business of logic-to explain the nature of the human mint, and the proper manucr of conducting its several pencrs, in order to the attainment of truth and kmowedge. It hays ofen those error: and mistakes we are apt, through inattention, to run into, and teaches us how to disting, wish between truth, and what carries only the appearance of it. B, this means, we grow acquainted with the nature and force of the understanding, ste what things lie within ii reach, where we way attain certainty and demonstration, and when we must be contented with bare probability. These comiderations sufficientiy wince the usefulness and benefit of this science, which oughit to be established as the foundation and ground-work of all our other knowledge, if we really wish to succeed in our enquirics. But we shall now proceed to treat of its parts separately, according to the division given of them above.

ELEMENTS of LOGIC.

BOOK I.

©F. SIMPLE APPREHENSION, OR PERCEPTION,

CHAP. I.

OF THE ORIGINAL OF OUR IDEAS.

-

Sec. I.—Simple Athtrehension and Ideas.

The first thing we observe, when we take a view of what passes within us, is, that we are rapoble of reccibing impressions from a varicty of objucts; that distinct notices are thereby conveyed into the understandinse; and that we are conscious of the r beiner there. This ateention of the mind to the objects actinis u;on it, is what we call simfle afiferchinsion, and is, in fact, the mind itsclf taking a view of things, as represented to it by its own consciousness. It is by this means that we come to be furnished with all those ideas about whici our thoughts are employed. For being semsible of the impressions made upon us, and attciading to the preceptions they bring, we can renew them arain upon occasion, evell when the objects that first produced them are cinwwal. Now, our ideas are wothin: else but these rencwed representations of what we have at iny time perccived and felt, by means of whicin things are again brought under the view of the mind, atd suaia to have a kind of existence in it.

It is true, we can upon many occasions combine our ideas variously together, and thereby form to ourselves representations of things that never had an existence in nature, as when we fancy a centaur, or a golden mountain ; but it is still certain, that the original ideas, out of which these are mate, are such as has been conveyed into the mind by some formerimpressions. It remains therefore to enquire how we come by our first notions and perceptions of things. Whence does the understanding derive these orisinal impressions and characters, which it can combine in so many dibiercit ways, and represents to itself, under sich infinite varicties? To this I answer, that if we attend carefuily to what passe* in our minds, we shall observe two inlets of knowicdge, from whence, as from two fountains, the understanding is supplied with all the materials of thinkins.
Sec. II.- Ill our original Intas derived either from Sensation,
First, outward objects, acting upon our senses, rouse in us a varity of perceptions, according to the difierent manner in which they affect us. It is thus that we acguire ideas of light and darmess, heat and colch. sivest and bitter, and all those other impressions wheh we term sensible qualities. This great source and in!et of knowledge is commonly distinguished by the name of serisation, as comprehending all the notices conveyed into the mind, by impulse made upon the orgens of sense.

Sec. III.—Or Refection.
But these ideas, numeras as they are, are wholly derived to us from without : there is therefore yet :nother source of impressions, arising from the mind's attention to its own acts, when, tumins inwards upon itself, it takes a view of the perceptions that are lodg-
ed there, and the various ways in which it employs itself about them. For the ideas furnished by the senses, give the mind an opportunity of exerting its several powers; and as all our thou;fhts, under whatever form they appear, are attended with conselousness, hence the impressions they leave, when we come to turn the eye of the soul upon them, enrich the understanding with a new set of perceptions, no less distinct than those conveyed in by the scuses. Thus it is that we get ide as of thining, doubting, believing, willing, \&cc. which are the dificeent acts and workings of our minds, represthted to us by our own consciousness. This second source of ideas is called reflection, and eridently presupposes sensation; as the inpersions it furnishes, are only of the various powers of the understanding, criplo; ed about perecptions already in the mind.
Scc. IV.-Nis, ard Proress of Human Fincoldo.
These considemanis, if we duly attend to them, will give us a clear and distinct vew of the , :1mal procedure of the heman ind llat, in its advances to knowledge. We canlave no perception of the oberations of our own, minds, mutil they are cxerted; nor wh they be exected before the understanding is furnished with ideas about which to employ them : and as these idat, that give the hist emplament t: our caculices, are evideritly the perceptions of sense, it is phin, that all our kuowledge must begin here. This, then, is the inso capacity of the human mind, that it is fitce to :cecive the impressins made upon it by outvind objectiaffectiner the serses; whel impressions, thus derived into the understanding, and there lodget, for the viw of the soul, em? , y it in vations acts of perceivins, romenberinc, considering, \&u. :1l which
 ness. An! this leads us to the scocond step the mind
takes in its progress towards knowledge, viz. that it can, by its own consciousness, represent to itself these its several workings and operations, and thereby furnish the understanding with a new stock of ideas. Fram these simple beginnings, all our discoveries take their rise : for the mind, thus provided with its original characters and notices of things, has a power of combining, modifying, and examining them in an infinite variety of lights, by which means it is enabled to enlarge the objects of its perception, and finds itself possessed of an inexhaustible stock of materials. It is in the various comparison of these ideas, according to such combinations of them as seem best to suit its ends, that the understanding exerts itself in the arts of judging and reasoning, by which the capacious mind of man pushes on its views of things, adds discorey to discovery, and often extends its thoughts beyond the utmost bounds of the universe. Thus we see, as it wese, at one glance, the whole progress of the soul, from the very first dawnings of perception, till it reaches the perfection of human knowledge; nor shall we, among all its vast stock of discoveries, or that infinite rariety of conceptions whereof they consist, be able to tind one original idea which is not derived fivm sensation or reflection, or one complex idea which is not made up of those original ones.
See. V...Dizision of our Ideas into Simple and Complex.
Having thus shown how the mind comes to be first furnished with ideas, we shail next proceed to the consideration of the ideas themselves, and endeavour to give sucin an account of them, as will best serve to explain their screial appearances, and the manner in which they are fommed. It is evident, from what has been said above, that they all fill naturally under these two heads : first, those original impressions that are
conveyed into the mind by sensation and reflection， and which exist there，simple，uniform，and witiout any shadow of variety．Secondly，those more com－ plex notions of thinss，that result from the various combinations of our simple ideas，whether they are conceived to exist of themselves，in any particular subject，or are unted and joincd tercther loy t e mod enfarging its concepions of things，and pususery the cads and parposes of knowledge．There two cabses comprehend our whole sion＇t of itcas；and，witun considered separately，in that orde：wicein they mons naturally secin to wiop the mselves to our thoughte， will，I hupe srive sucha wew ol the concuet and man－ ner of the mind，as may combite not a bilde is in－ troduce us to an arpuaintance with o：，是te，and make us sensible of the capaity and atent of the human intellect．We procern，therelere，to a more partic ular account of his ciasision of our ideas．

Cilli＇．II．
 OFSIMUITI DEAら。

Scc．I．—Simplt Lll as mintet．

The：inst chass of erm ileas are thase which I dis－ finguish by the bathe of simple perespation ；becatase lacy wist in tice mind an ter anc uniormaphenance
 mal objects convey at once into the underanders many difiew ideas，all unitei toretion and mah－ ing as it were one whole ：yet the inapecsions the n：－ selves are evidenty distiact，andare conceived he the mind，each conder a for：a peondar to is．aff．Th． the incus of colour，execosion，and mution，may be
taken in at one and the same time, from the same body ; yet these three perceptions are as distinct in themselves, as if they all proceeded from different objects, or were exhibited to our notice at different times. We are therefore carefully to distinguish between our simple and primitive conceptions, and those different combinations of them, which are often suggested to the mind by single objects acting upon it. The first constitute our original notices of things, and are not distinguishable into different ideas, but enter by the senses simple and unmixed. They are also the materials, out of which all the others, how complex and complicated soever, are formed; and therefore ought deservedly to be looked on as the foundation and ground-work of our knowledge.

Sec. II.—Simple Idcas of Sensation.
Now if we take a survey of these ideas, and their screral divisions and classes, we shall find them all suggested to us, cither by our senses, or the attention of the mind to what passes within itself. Thus our notices of the different qualities of bodies, are all oif the kind we call simple ideas, and may be reduced to five general heads, according to the several organs which are affected by them. Colours, sxc. and sounds are coavered in by the eyes and ears; tastes and smeit; by the nose and palate ; and heat, cold, solidity, \&x. by the touch. Besides these, there are others which make impressions on several of our senses, as extension, figure, rest, and motion, \&c. the ideas of which we recilve into our minds both by seeing and ferims.

Sec. III.—Simtle Ideas of Reflection, Es.
If we next turn our view upon what passes within ourselves, we shall find another set of simple ideas
arising from our consciousness of the acts and operations of our own minds. Perception or thinkiins, and volition or willing, are what every man experiences in himself, and cannot avoid being sensible of. I shall only observe further, that besides all the alosementioned perceptions, there are others that come ho our minds by all the ways of sensation and renection; such are the ideas of pleasure and pain, power, existence, unity, succession, sc. which are derived into our understandings both by the action of objects without us, and the consciousness of what we feel within. It is true some of these ideas, as of extension and duration, cannot be conceived altogeti:er without parts, nevertheless, they are justly rink id among our simple ideas; because their parts bein. all of the same kind, and without the mixture of any other idea, neither of them can be resolved into $t=1$, distinct and separate conceptions. Thus they still answer the definition given above, of being one uinform appearance in the mind, with variety or pluars!ity. But to prevent confoundin! one simple ideas of space and duration, with those complex modes of them marked out by the several measures commonIy in use, as yards, miles, days, ycars, sec. it may perhaps be most proper to consider the least pertions of either whereof we can form a clear and dintinct pereption, as the simple ideas of that kind out of which all their other modes and combinations are formed. Such an instant, or point, may be conceived to be the same in respect of duration of space, as unity is in respect of numbers ; and will serve best to show, how by a continued addition or repetition, our more colarged and complex ideas are nuade up.

Sec. IV.—Simhle Ideas have no Admission but by the fropher Inlets of Nature.
Having thus given a general view of our simple ideas, I have still two observations to make concerning them. The first is, that they are such as can cialy be conveyed into the mind by the proper char nels and arenues provided by nature ; insomuch the if we are destitute of any of those inlets, by which the impressions that produce them are want to be admitted, all the ideas thence arising are absolutely lost to us ; nor can we, by any quickness of understandin;, find a remedy for this want. A man born biind is incapable of the ideas of light and colours; in like mamer as one who is deaf can form no notion or conception of sounds. Hence it appears, that these our simple ideas are just such as nature has furnished them, and have no dependence on our wiil ; we can neither destroy them when in the understanding, nor fashion or invent any now one, not taken in liy the ordinary means of perception. So that we here see the utmost bounds of human knowledge, which, however mighty and enlarged, cannot exceed the limits of those our simple original ideas, and their various combinations.
Suc. V.-Theit furnish ample Materials of Rntatl:dge.
And this leads me to the second observation I proposed to make, which is, that though the mind cannot, in multiplying its conceptions of thines, advance one step beyond the materials furnishes! it by selise and consciousbess; yet as it has a power of combining, modifying, and enlarging them, in all the different ways in which they can be put together, it therefore finds itself in possession of an inexhaustible treasure of ideas, sufficient to employ it to the full extent of all its poictis, and furnish matter for all
those various opinions, fancies, and views of things, that make up the subject of its thoughts and contemplations. Lei us but reflect upon the single ifted of unity or one, and observe what a variety of combinations are formed, by continually adding it to itself; insomuch that the understanding finds no stop or boundary, in its progress from seanter to number. In what an infirity of cififerent lights may extension alone be considiered! what limits can be set to that enciles. diversity of figurs, which it is in the power of the imargination to fashion and represent to it elf ? If to these we add those numberns other combinations that result from variousiy componding and comparins the rest of our simple ideas, we shall have litte reason te comptain of being limited to a scamy mearure of knowleder, or that the excrese of the human faculties is comed within maros bemods. But haviag traced the fergress of the mind then in its on ieribal anelsimple ide:s, meil it begins to andarge its anceptions ly witin; and ying them wewer; it is mow time to take a surey of it as thas employed in multiplying fis viells, bat we may see by what steps it advances from one degree of improvemem th anstace, and how it combers to mange that inmite stel of materials it finds inself posesered of.
Sce. VI.—The Divesion ff complex Idecs into those of

Whecocr attentively considers his own thomehts, and takes a view of the seremal complicated ide ess that from time to time ofier themsches to his understanding; will readily observe, that many of them are such as have been derived from without, and surgestal by different objects afticting his perception; others, a;eun, are form al by the mind ithelf variously combininy its simple ideas, as seems best to answer
those ends and purposes it has for the present in vier. Of the first kind are all our ideas of substances, as of a man, a horse, a stone, goid. Of the second are those arbitrary collections of things, which we on many occasions put together, either for their usefulness in the commerce of life, or to further the pursuit of knowledge : such are our ideas of stated lengths, whether of duration or space ; as hours, months, miles, leagues, Sc. which divisions are apparently the creatures of the mind, inasmuch as we often find them different in different countries; a sure sign that they are taken from no certain and invariable standard in nature. Many of our ideas of human actions may be also referred to this head ; as treason, incest, manslaughter, \&cc. which complex notions we do not always derive from an actual view of what these vords describe, but often from combining the circumstances of them in our minds, or, which is the most usual way, by hearing their names explained, and the ideas they stand for enumerated. These tro classes comprehend all our complex conce,tions, it being impossible to conceive any that are not either suggested to the under tanding by some real existences, or formed by the mind itself arbitrarily uniting and compounding its ideas. We shall treat of each in order.

CHAP. III.

OF OUR IDEAS OF SUBSTANCES.
Sec. I.-Ilras of Substances, Colluetions of Simple Ideas, held together by some unknown sutpiort.

The first head of complex ideas mentioned in the foregoing chapter, is that of substances, which I choose to handle liciore the other ; because, as will
afterwards appear, the notices dcrived from this source very much help us in forming those arbitrary collections, which make up the second division. For in many of them we take our hints from the reality of things, and combine idcas that actually exist torether, though often with an exclusion of others, $i s$ will be explained when we come to treat of abstract and universal notions. It has been already ofeerved, that the impressions ronveyed into the understanding from external objects, comsist for the most part of many different ideas joined together, which all unite to make up one whole. These collections of tariens ideas, thus co-existiner in the same common subject, and held together by some unknown bond of union, have been distinguished by the name of substanct: a worl which implies their sulbsisting of themselies, without dependence (at least as far as our k!owidede raches) on any other excated beings. Sach are the ideas we have of ,roll!, iron, water, a man, \&ec. Jor if we fix upon any one of these, fir instance, gold, the notion mader which we represel:t it to oundres is that of a body ycllow, very weighty, hard, fusibl-, malle:ble, \&e. where we may obserye, hisit the sereral projerties that go to the composition of sold, are repersented to us by clear and evident perceptions; the smion wo of these properties, and their thereby consituting a distinct apecice of borly, is clearly apprehended by the miad: but when we would push our elquiries farther, and know wheria this unina consisis, what holds the properties turether, and gives them their self-subsistance, here we find ourselves at a los.i. However, as we cantor conceive quatitice, without at the sane tim: supposins some subject in which they adhere, hence we are naturally ied to form the notion of a suppurt, which, serving its a foundation for the co-existeace and union of the different
properties of things, gives them that separate and independent existence under which they are presented to our corception. This support we denote by the name substance ; and as it is an idea applicable to all the different combinations of qualities that exist any where by t'omscives, they are accordingly all cailed substances. Thus a house, a bowl, a stone, \&c. having each their distinguisininer properties, and being conccived to exist indepondent one of another, the idea of substance belongs alike to them all.

Sec. II.—The Division of NLodes into Essential and Accid.ntal.

In substances, therefore, there are two things to be considered : frst, the seneral notion of self-subsistens:, which, as I have said, belongs equally to them all; and then the several qualities, or properties, by which the different kinds and individuals are distingrished one from another. These qualities are othervise called modes, and have been distinguished into esscntiai and accidental, according as they are perccived to be separable or inseparable from the subject to whic: they belong. Extension and solidity are tessential modes of a stone ; because it cannot be conceined without them; but roundness is only un accidediai mode; as a stone may exist under any shape or figure, and yet still rctain its nature and other properties.

$$
\begin{gathered}
\text { Sec. III.-The Notion of Selc-Sisimence inspfarable } \\
\text { from subsistenc. }
\end{gathered}
$$

I might run farther into these divisions and subdivisina, in wioch logians have lew very forile; but a三 they tend litate to tir: adrancencin of real
 roode and thuia sinncaivis, bian furnish cieai and

OF LOCIC.

distinct apprehensions of things, I shall not tianitie the ruad er with them. It is more meterid to - = ite, that the change of properties in any substatere, tao it oft-times cinanores the nature of that sinhotance, tina: is, its species or kind ; yet it never destroy the ereaeral notion of self-czistence, lut leaes :at cratly clear and applicable, as before any sots alte.aion happened. Wood, l,y the applicalion oflire, is fermed into charcoal ; but chaterai, hro over differat from wood, is still a substance. In like anance:, wax may be converted into flame and strolle; a huina body will moulder into dis: : yet these alteraions elestroy not their beiner or exi,ience: tuey are still stbstances as b, fore, 1 hamed umber a difierent form and appestane. In the serad expriments marle by chemists, bodies wher:!o many chances, anil pia. on successively a great variety of diairent shapes, and yet, by the skill and addes of the oferabor, $t_{1} \cdot y$ are often browsht back to their first and primiave form. What aitertion can we suppore the fire, or the application ol any other bostr, to make, unles; on the configuration, terture, oi comesin: of the minus. parts? Whenthese are chansed, the hody is proportionably choure l; when they return in their oresma state, the bol, liacwise pury on its first and natural appearance.

 ane may ie very farishs, and the int rand coastitution tanne aring be of conse pence extemely ditucus

all the different species of corporeal substances. Nop is this a notion taken up at random, or one of those chimerical fancies in philosophy, derived rather from a warmth and liveliness of imagination, than observations drawn from things themselves. Do we not c : ly see our focd, by the changes it undergoes in the different avenues of the body, converted first into b'oot, and thence employed in nourishing, building up, and enlarging, the severel parts of that wonderful fabric? Rein, descending from the clouds, and mixing with the mould or earti of a garden, becomes aliment for trees of various kinds, puts on a diversity of forms, according to the different channels and conveyances thangh which it passes; and at lost, after innumeralite changes and transmutations, spicuis forth in leares, cras ia buds, or is converted into the subsuance of the tree itself. Can we conceive any greater diference between the component parts of gold, and those of stone, than between the moistened partiches of garden mould, and those new forms and figures under which they appear, after they have been thus fashioned by neture for the purposes of growth and jouris!mant?

> Stc. V.-Essence of Siletances nothing but the internal stracture and consitution;

If t is be duly attended to, it wiil not appear wonderful to assert, that the vaicie of material substances arises wholly from the diferent configuration, size, tuature, and motion of the minute parts. As these happen w be vamously combincd, and knit tosethr, mour different iums, bodies put on a diversi1 :- of appearances, and conroy into the mind by the sonees all tione sereral impressions, by which they are if tinguisher one from another. This internal consitution or structure of parts from which the ser-
eral properties that distinguish any substance flow, is called the essence of that subsance, and is, in fla, n:lnown to us, any farther, than by the reacioble impressions it makes upon the organs of senseGold, as has been said, is a body ychow, very weighty, hard, fusible, malleable, \&c. Tlat inwan stituturc, and conformation of is minute particics, by v:hich they are so closely linked together, and from which the properties above newtioned are conceived to flow, is called its essence ; aded the properies themselves are the perceisobe maths that mane it bemon to us, and distinesula it from ail other sul:stances; for our senses are not acute chomh to reac: its invard texture and constitution. The prats tam. selves, as well as theirarran ment, lio far beyondtie ulowed aremation of hama cight, coen bhen a:sisted by microscopes, and all the other contrix.ate, of atit.
Sice. VI.—Is wholly unhonow to us and sirwis to c: tinguish the sjuctis";
Thus, as to the essence or interal corstinet at of ardid, we are wholly in the dark; but many of the par erties derived fiom tia; a suce batac aboms and distinct inpressions, as the wcient, harnises, ataly yol-

 shbia, make up our complex idea oi shat The same may be said of all the other species of corporest subsumes, a, lead, ghass, water, Lic. our irieas of them bxing westing cles but a contcetion of the oriinary qualities observed in them.

> Scc. VII.—Yet it is rishty firesumed to be distinct in all the setrol kinds.

This, howerot, ought to be nimerved, that though the eseence or inward structare of bodice is attogeth-
cr manown to us, yet re rightly judiza, that in all the sclelici specics, the essences are distinct. For each swecies being a crifction of properties, which, taken t. reuer, are difierent from thuse of every other speches, the cchiformation of pats, on which these propctite cepend, must in like manner be different; and this, as we have said, constitutes the essence. Iron and olas ate evident! cistinct kinds of body ; their peacmije qualities have litue or nothing common; and theacfer lice inrard structure or constitution from hion thos quaties how, ommbe be same in leuh. Lext fere ali, this is tie ooly thin, we enn with Witait. ABum conceming these essences, whichly-
 wac in cur retennings abut honot, ard odere to

 aw, from buan gatitum ud not fon a serposed

the motion or arrangement of parts ; but it also pliceives, that consciousness, a simple individual act, can never proceed from a compounded substance, capable of being divided into many. Let us suppose, for instance, a system of matter condrwed with thought ; then either all the parts, of which this system is composed, must think, which would muke it not one, but a multitude of diutinc: conscion, beings; or its power of thinking must arise from the connexion of the pars one with another, their motion and disperivon, \&e. which, all ialien bse, dacr, contribute to the !purlan-
 !avis, :wal wamer of combining them, cai: produce nothing bit an atd fif strucine, and varisus, wostes of wotion. All merniou of human compertion, is watches, cloci:, Ser. however athill; the: pherts ate

 vaionsly cong. : : and rumbintr one into another
 lut lipule and motion. $1 /$ a 1 de chells, the heur and minu: of the ca, it is moly by the motion of the dif-
 ed on tie hour-piate for that patper lac never

 structure, so to improse the conposition, as that is

 never be sulponed to result from the:a.

〒Gis thon be: revilent, that intellisence canot

parts; if we suppose it to belong to any system of matter, we must necessarily attribute it to all the parts, of which that system is composed; whereby, instead of one, we shall, as was before observed, have a multitude of distinct conscious beings. And because matter, how far soever we pursue the minuteness of its parts, is still capable of repeated divisions, even to infinity; it is plain, that this absurdity will follow us, through all the suppositions that make thought inherent in a material substance. Finding, therefore, consciousness incompatibie with the cohesion of solid seperable parts, we are necessarily led to place it in some other substance, of a distinct nature and properties, which we call spirit.

Sec. X.—Bociy and Shirit distinct Substances.

And hew it is carefully to be coserved, that the several species of car/oreal substances, though distinguished one from another, and ren'sed under diferent names; yet, agreeing in come common properics, which, taken together, make up the notion of becit, are thence all conceived to partale of this femeral nature, and to dibier only as dificeat modifications of the same substues. Whatever consists of solid extended parts, is called matter; and as all the varicus species of body, however distinguishacd from one another by their several properties, have yet this in comnon, that they are made up of such solid seperable parts, hewe they fail naturally under the gereral denomination of material beings, and are nct conceived to differ, but in their form. Thus sid, antimony, wood, $8: c$. alike partake of the notion of body ; they are all equaliy material substances, and have no ohici difference, but what arises from the different structure and conformation, \&ic. of parts, as we have shewn abow. But slitit is something altogether
distinct from body, nay, and commonly placed in opposition to it ; for which reason, the beings of this class are called immateriul; a word that implies not any thing of their nature, but merely denotes its contraricty to that of matter.
Scc. XI.-Thre may be mary rarirus Sthecics of Subsimen, bisides those that come within the reach of our ficcutics.
Lociy and spinit, therefore, differ not as species of the same stobstance, but are really distinct kinds of substances, and serve as general heads under whic! to rank all the particular beings that fall within the compass of our knowledge. For we having no ways of perecptical bit suse and consciousness, can have no motices bi things, but as dcrived from these two inlus. By our senses we are informed of the existnow of solid exteat ed substances; and reflection 14.tls us, that there are thinkiur conscious ones. Beyond these ou: conceptions reach not ; and therefore, thourh there may be: many other kinds, an different from them as they are from one another, yo hating no facultics suited to them, they are as remote from our hansledse, as light and colours from the apprebension of a man born blind. I belicve it will hardly be doubted but the substance of the Creator differs more from that of his creatures, than any two created substances can from one another; and therctore when ve call Cod a :pini, we ought not rashly to presum:, that he is so in the same sense in which the human soul is; apinit. The word is, indeed, used by us, to dencte in gencoal all thinking intelligent substances, in whicis sonse God is very fitly cailad a spirit. But it were the heisht of folly to mateine, becalle this name is applical as well to the mind of man as the Creator, that the efore they partake of one common
nature, and differ only as different modifications of the same substance. This I mention here, to check the presumption of the human mind, always iorward to conclude, that every thing comes within its reach, and to deny unistence to whatever exceeds the conprehension of its scanty and limited powers. Beings of a superior class may enjoy many ways of perfection unknown to us, from which they receive notices as different from those in our minds, as the ideas we apply to spirit are from the ideas we apply to body. Solid and thinking beings are, it is true, the only idcas of substance that we are ahle to frame; but this is no more an aisumitht againist the existence of other kinds, than the want of the ideas of light and colours in a blind man would be a good argument against the reality or possibility of such perceptions. Scc. XII.-Difference in the manner of conciviving Corroreal and Shiritual ithosiances.
Before I dismiss this subject, it may not be improper to take notice of a remarkable difference as to the manner of our conceiving corporeal and spiritual substances. Those of the first kind convey themselves into the mind by impressions made upon the organs of sense ; and as these impressions are different in different bodies, the ideas they produce must of course vary in proportion. Thus we get preceptions of distinct powers and properties, and range bodies into classes, according as we find them to argree or disagree in their coservabe qualit:s. But it is not so in our notion ol spirits ; for havin; no conception of their powers and operaions but by what we feel and expericace within uurscises, we cannot nocribe to them properties or ways oi knowhede, disinct from those sussested to us ory own con-

own there may be varicus manks of spiriteal ine: yel we are not to imasine then diviced iom one another by any diversity of powers and opeiations, but merely by possessing the sane pooners, Eic. in a hiegict or lower desere. It is not, howati: acparnant to reason, that they ,lrai! be distingucho.! by their several prowatiee in like ramer an sermi,e things are by the differen rimblies gi, wrase in

 mote from our concepris?, canot same a, a man; whereby to distinguisit their diterent orders. Vie.
 manner suiterl to our wes of knuricirre ; and wion we would rank them inw sperins, ancording to ian
 the :cal, of beine, we aroribe to them what we int! mosi cxcellent in oursclves, as knowledge, thir'.in: foresig'in, ior. and those in different memsures proporticacd 4 , the station peculiar tocarh rank ai species. Dat that this is a very imperde: ä of ditinguishing the vainus orders of mte!le and liongs, vill wot, I lhink, need many words to make it appear ; especially if lic consider, that tise manu:- of communicetit! their thoughts, without hice inderention of bodily wembe, is a thing is us alseg tiow incomprehensille, and necessarily ientis us to aupmo. that they have rays of procepiom atid knowirdye which our feciaties cannot give us any nri.e t.
 staterylaroa.
3at I shall ned pursue these renertiose lirtiner

 to convince us that wi: present state ailliot ada:i of
a perfect arci adequate comprehension of things; and to let us sec, thet there may be other ways of knowledge, beyond the reach of the faculties we now enjoy; which ytt, in succeeding stages of our existence, we may arrive at, when, being freed from the present cumbersone load of the lody, we shall mount up to stations of gieater eminence, and advance by a perpetual series of approwhes towards him, who is the standard of percection and happiness.

CHAP. IV.
OI IDEAS FRAMED BY THE MIND.
Sec. I.-In framing many complex Ileas, the Mind is q:holly active, and frocects by a voluntary choice.

Hnations of our simple ideas as have a real union in nature, and are suggested to the mind by things themselves variously affecting our perception: it is now time to take a niew of the other class of our complex notions; I mean those arbitrary cullections of different ideas, which we on many occasions bring togethe l_{y} that power which we find in ulluselies, of uniting, comparing, and diversifyias our notices of things. In the reception of simple idens, and even in those of substances, the understanding is wholly passive, and the perceptions produced correspond to the impressions made upon it. When we see a house, or a tree, they necessarily appear each unde: its proper form; nor is it in our power to receive from these objects other idens than what they are fi:$t=c$ to produce. But in this second class of comples. couceptions, the mind acts voluntarily and of choice; it combinch on!y such ide:s as are supposed best to
suit its present purpose ; and alters or clanges these combinations, by ibsulting some, and tirowing out others, accorling as the circumstances of tingss $10-$ quire their being vicwed in different lights. Now us this is by far the most comprehensive branch of our icieas, and includes those that most frequently occur in the search and pursuit of lenowledge, I shall endeavour to treatt them in the exactest order and metl:od ; and fur that parpose range them under several heads, according to the different acts of the mind exerted in framing and puting them togetiacr.
Sec. II --Three several Act:s excrted by the Mind ins ficumints its arbitrary Ifos, viz. Composition;
These acts may in the general all be reduced to tbice. 1. Composition, when we join many simple idaas toseldar, and consider them as one picture or represimation. Such ais our ideas of leadty, grati-
 the mind sometimes confines it. if to the varions con-sirle-thion of the same idea, and, ly e:targing it in difierent deperes, exidhits it underadiersity of forms. 'Thu:; ly adding mits together, in clistinct sofanate culdutioni, we come be the several combinations of satabers, as a dozen, a score, a million. It wher thass we unite frrepeimes of difient kisds; in which case t e compesition is more manitest, and the idea it 3 if berombes of course more compicated. Jtarmen!, for instunce, is a compound idea. mide up) of many dilierent sounds united ; all which the mu:siciall most have, and put together in his minci, b:fore the ear can be entertaned with the actitulperfermance. Dow although the act of the mind is ia strme measure exerted in tlic framing of all our compirx molions, yet as many of them include certain fimited and particular considerations, arising from
other operations of the mind employed about them; it is necessery to take accomit of these acts also, if we woult conceive clear! y the manner in which the several species of car compound ideas are formed.

Ser. III.-Ahetraction;

2. The new: operation therefore of the mind, about its ideas, is aistrucian, when we separate from any rif our rime ptions all those circumstances that rendde it juticular, or the represemtative of a single determisate object ; by which means, instead of standing for an individual, it is made to denote a whie rank or ciass of things. Thus upon secing, for iustance; a square or circle, we leare cat the considioation of their bulk, and every thing else peculiar to then, as they immediately affect our sight, retaining only the noten of their figure and shape. In this manner west our sterolideas; for such naked appearaces chanted from the circumstances of time, place, \&c. serve the mind as standards by which to rank and denominate particular objects. When therefore we meet with a figure answering to that shape end form we hat hied up in our understandings, it is immediatel; refiral by the mind to this pattern, and culid $\mathrm{b} y$ its nuen, which by this means becomes prope to the whole pecuics. Thas a square, or circle, are anioun! items, common to all figures of list particular shes, ami dike applable to them viescer they caist; in tise matner as the ideas thenselins are somiru, and representatives of all the kind.

> Sec. IT.-. And Comparison.
3. The thid and last act of the mind about its idteus, is the condiaring them one with ancther, when we carry our acnaina...tion of things beyond the w-
jects themselves, and examine their respects and correspondences in reference to other things which the mis:d brings iinu view at the same time. It is thus ne uct all our ideas of relutions, as of greater, less, aidic younger, father, son, and innumerable others. This threefold view of our ideas, as either compoundcol of many cthers put together, or made universtal by tine abstraction of the mind, or as representing the vations relations and habitudes of things, will give us an opportunity of ubserving whatever is most curious and usctul in this fundamental branch of knowledge, and of explaining the manner and procedure of the understanding in enlarging its viev's, and multiplying the ujejets of perception. That we may there-fore conctice of this matter with the ereater order and clearness, we shall make each of these several. ideas the subject of a distinct article.

ART. I.

OF COMPOUND IDEAS..

$W_{\text {: }}$f: begin therefure with those ileas which may be nropely terned compound, as beiber derinad liom that power the mind has of unitim, many conceptions

 cunsined merely as they are combinations of ta:e makenstanding, and with a view to thore pantan ideas out of which they are framed. Here, as was ardery obernad, the mind sometimes proceche b:

in both ways finds infinite scope and variety. But that we may follow the natural procedure of the intellect, and trace it in its advances from simple to more complicated acts, we shall first take a view of it as employed about one and the same idea, where perhaps we may meet with such instances of address, management and contrivance, as will appear perfectly astonishing to one who has never set himself seriously to consider the manner and conduct of his own mind.

Sec. II.—Unity the Original and Foundation of all our Idrus of Number.

The most obvious and simple idea we have, is that of unity or one. By adding it to itseli continually, and retaining the several collections in our minds, we come by ail the different combination; of numbers, in which we readily perccive an cadkess divirsity. All these ideas are nevertheiess eidently distinct among themsedres, the addition of a single unit constuatiog a munier as clearly dificrent from that immediatily before it, as any two the most remote ideas are from one another. But that the understendins may not lose itserf in the consideration of those inimice combinations of whici unity is capable, it procucds by regularsteps; and begianing with the originul idea itself, pursues it through all its varicties, as they are formed by the repeated conimal addition of unit after unit. Tlas numbers are made to follow one another in an orlery posicesion, and the seroul suecess ine collections are distinguicled by particular names.
Sec. III.-The arfful conforizition of the names of .Vumber.s a grat helf to our cuacchtions;
And here we may take notice of a wonderful artifice sade uso of e : wie mind, to facilitate and help it.
forward in its conceptions. For as the advance from number to number is endless, were they all to be distinguished by different denominations that had no connexion or dependence one upon another, the multitude of them must soon overcharge the memory, and render it impossible for us to go any preat way in the progress of numbering. for this reason it is so contrived, that the change of names is restrimed to a few of the first combinations, all the rest that follow being marked by a repecition of the same terms, variously compounded and linked together. Thus thirteen is ten and three, foultech, ten and four, and so on to twenty, or two tens, when we begin agan with one, two, cice until we admace to thinty, or three tens. In this manner the prosession continues ; and when we arrive at ten tenc, to prevent confusion by a two frequeni repetition of the same word, that sum is dietitsenished by the nume of a hunded. Arain, ten hunimed is called a thomsmot, at which pesicel the computation berins athew, ruming throph all the furmer combinations, as ten thousand, a letnfired thousand, ten hundred thousand; which last whection, for the reasons mentioned above, has the mame of a million appropriated to it. With this million, we calsein as before, unsil it is repeated a wiliion of times; when, if we chares the denomination to billioss, and adrance in the same manner through trillions, quartillians, the series muy be carried on without cumfusion, to any length we please.
Suc. IV.—And the princifal heoren that our Idses of tumitrs are so remu'nu!? decinc:
Tl: is artful ombination of names to mark the gradmal incerase of tembers, is peribig one of the arteutwe remements of he huma unde andms. a a particulaty desseres our acimiration for be mataicr
of the composition; the several denominations being so contrived as to distinguish exactly the stages of the progression, and point out the distance from the beginning of the series. By this means it happens, that our ideas of numbers are of all others the most accurate and distinct; nor does the multitude of units assembled tos- ther, in the least puzzle or confound the understanding. It is indeed amazing, that the mind of man, so limited and narrow in its views, should yet here seem to shake off its natural weakness, and discover a capacity for manacing with ease the most bulky and formidaible collections. If we enquire particularly into the reason of this, we shall find it wholly $o w i n g$ to the address of the mind in thus distinguishing numbers by dificent names, according to the nammal order of pro, jecssion. For as those names are made to grow one out of another, they may be aptly compared to a chain, all whose parts are linked together by an obvious and visible connexion. Hence it comes to pass, that when we fix our thoughts upon any number, however great and seemingly unmanagable ; yet, if it is once determined to a particular name, we find it easy to run back through ail the stages of the proçression, even till we arrive at unity itself. By this means we see, wit'l a single glance of our minds, not ol!y the two extremes of the number under consideration, but also the sevaral intermediate parts, as they are united to make up the whole. Sec. V.- 4 s they irelit us to a checr Percention of lie intwijucent Furts.
Now it is to this clear and aroumte view of the interjacent ide:", that we cwe eur so distinct percepu:on of the ramus combinatioss of numbers. And juded we may ousere, in the general, that all our ideas of quantity, especialy when they grow to be we
large, are no otherwise ascertained than by that perception we have of the intervening parts, if I may s say, between the extremes. When we look at any object considerably distant from us, if we have a clear view of the interjacent lands and houses, we are able to determine pretty nearly of its remotencss ; but if, without such a knowledse of the intervening spaces, we should pretend to judge of the distance of objects, as when we see the spire of a stecple behind a wall, or beyond'a mountain, cucry one's experience is a proof how hable we are, in these cases, to be deceived. Junt so it is in judging of duration. When we carry back our thoughts to any part period of our lives, without consideration of the number of years or months, we frat that our icha of the time clapsed grows more distiart, in projortion as we become senailde of the intermediate parts of our existence. λt first we are apt (1) judge the distance extremely short ; but when we see carselves to consider our several suces sive tho:rhts and actions, the idea of the duration grows upon us, and continues to increase as the atterition of the mind briners new periods of life into vie:
Sco. VI.—bithout namen, we cannot male ary frogress in Numbering.
Henc. it will be easy to conccive how muth the mind is helped fins ard in its perception of number, by that reddy comprenconion of all the seveat stinges in a progression, which peculianty belorgs to ideas of this class. But this, as 1 have brione inimated, we derine from the orderly series and comnexion of names, insomuch that where they cease, the conmentation of numbers also ceases with them. We can have no idea of any smin, without a knowledf: of all the terms that go before, according to the natural order in which they follow one another; so that he who camut, in a
regular way, count to ninety-nine, will never, while that incapacity continues, be able to form the idea of a hundred; because the chain that holds the parts together, is to him whully unserviceable, nor can he represent to his mind the several interjacent combinations, without which it is impossible in this case to arrive at a distinct perception.
Sec.VII.-The great advantages of Address in Classing our complex Concehtions.
I have insisted the more Jargely upon this, not only because it is by number that we measure all other things, as duration, extension, motion, sie. but also because it lets us into the most natural view of the conduct and procedure of the understanding, and makes us sensible of the great art and address that is necessary in the classing our very complex conceptions. He that can so put tosether the component parts of an idea, as that they simal he obvious to the notice of the mind, and present themselves, when occasion requires, in a just and orderly connexion, will not had it very difficult to obtain clear and accurate perceptirns, in most of those stibjects about which our thomets are conversmt. For the great art of J:nowledge lies in managing with skill the capacity of the intellect, and contriving such helps as, if they strengthen not its natural powers, may yet expose them to no unnecessary fatigue, iy entangling and perplexing them with considerations remote irom the business in hand. When ideas become wey complex, and by the multiplicity of their parts grow too unvieldy to be dealt with in the lump, we must ease the view of the miad, by taking them to pieces, and setting before it the several portions separately, one after anotiter. By this leisure? survey we are enabled to take in the whole; and if we candraw it into
such an orderly combination, as will naturally lead the attention, stcp by step, in any succectiins consideration of the same idea, we shall ever have it at con:mand, and with a single glance of thought be able to run over all its parts. I have therefore explained here, at some length, the conduct of the mind in numbering ; it seeming to me the best model in this kind, whether we consider the many aivantares derived from such an orderly disposition of our idcu:, or the greateart and skill displayed in binding these ideas tugcther. This also is farther wnatkable. in the consideration of number, that from it chiefly we derive the notion we have of infinity ; it being apparent, that, in adding number to number, there is no end; the possibility of doublingr or increasing our stock in any degce, remaining as obvious to the understandag, after a sreat and continued run of pro:rresumas, as when it iist began the computaion.
Sce. VHI-The Comsiduration of tiantre of at Uwr in ascertaining our Ideas of ispuct and tuitioiten.
If we now turn our thoughts towath space and deration, here 1 (o) we shall find that we very selion arrine at clear and distunct ideas of either, but when we introduce the consideration of n:mber. The more obvious and limited portions, it is true, casily slide iato the mincl, in the natural way of perception; fat it was the ne-sishty of comparibe these dogether, tiat put us u, wh the contrivance of errain stated measures by which precisely to detemian the quantity in each. Thus, inches, feet, yatds, miles, Sc. ascertain wir ideas of ectension ; as minntes, hours, the:
 Es, ex patts, as tring most open the notice on the understamdins, and beng nowe on a level with its powers, are retiuind with tolciable exictness; and
the larger portions, when the number of repetitions of which they are made up is known, are thereby also reduced into clear and determinate conceptions. A foot, and yard, are measures easily comprehended by the mind; nor do we find any difficulty in conceiving a mile, when we consider it as equal to a certain number of yards. If we are still for increasing the standard, we may take the semi-diameter of the earth, and supposing it equal to 8000 miles, make use of it as a measure by which to ascetain the distance of the sun or fixed staris. Just so it is in duration ; from hours we rise to days, months, and years; by these, repeated, and akised together, we measure time past, or can run forward at pleasure into futuri$t y$, and that without any confusion or perplexity.
Sec. I.i.-Without they are afit to degenerate into a conjused and irregular Heaf.
It is however to number alone that we owe this distinctness of percepion, inasmuch as space and time, considered apart from the regular and ordenly repetition of nites or years, leave no determinate impressions i: the mind, by which to know and distinguish their sereral portions. Ideas of either, thus takel in al a wettre, aire a contused and imegular hoap, copeciathy where we endeavour to enlarge and marrnity our rie:s. and cive fell piay to the powers of our intellect. Bonetaing inleed the mind conceives, vast and nighte, but mothing that is precise, accurate and just. But when it begins to consider these ideas as made up of paits, and fixing upon such as are proportioned to its reach, sets itsclf to examine how often they are repeated to make up the whole, the perceptions of the understandius put on a new form, and disco:c: their exact bounds and limits.

Sec. X.-Infinity a:l Object too mighty for the Survey of the Humun Mind.

And thus, as before in number, so here in extension and duration, the mind begins with simple and obvious notices, advancing by degrees to more enlarged and intricate conceptions. A day, or a furlong, are of eacy apprehension to the understanding, and by their sublitivions into still lesser spaces. exhibit themsclues distinctly in all their parts. With these variously rejuated, we travel through space and time; so that being able to reduce all our ideas of this class, however mirrity and enlarged, to the clear and icterminate perceptions of number, we can conduct our thoughts withont petplexity, and never find oumelves puzzled, Lut wheli, presuming too much on our own strength, we lumeh into speculations, that stretch beyond the pervers of the hamatn intellect.N'umber may be compared to a line, that, sciting ont from mily, wos on in a colthated increase of icmeth, vithout a prosibility of ever arriving at its ultimate feriod. So far as w pursue it in our thoughts, and trace its regular adranes, so fis cur ideas ate accurate and jus: biut when we lot lowe our understandings, after a bundiess remainde:, and would fathon the depth of infinity, we find ourselves lost amidst the greatness of our own crncernoms. Some notions, it i:s true, we have, but such ats, exceeding the dimensions of the mind, lie inwhed in darkness and obscurity ; and beita destitute of order, method, and comexic:, afford no ioundation wheron to build any just and acturate conclusion.
Sec. Xi.—Wienr refresented in its full Dinersions, but by un ondlen.s and coer growi..s Idea.
And this pertaps may be the reason why many modern piniosopincts, in their discourses concerning
infinity, have run into apparent contradictions ; because, encountering an object too large for the survey of the understanding, they found themselves surrounded with inextricable difficulties, which their scanty and defective ideas were by no means able to dissipate or remove. The truth of it is, finite ideas alone are proportioned to a finite understanding ; and although we are not wholly without a notion of the infinity of number, yet it is not such a one as comprehends and exhausts its object, or exhibits it to the mind in its full size and dimensions. We only see the idea, as capable of an endless increase, but cannot by any effort of thought take in the whole prospect; and indeed it is properly that pert of it which lies beyond the reach of our perception, and still remains to be taken into the account, to which we give the name of infinity.
Sce. XII-Duraion, whether considiod as fias: or to come, Boundless, whence our I'le of Eternity.
This idea of the infinity of number, imperfect as it may seem, is nevertheless that by which the mind ascends to the concerition of ctor,ity and immensity. Ecr when we consider duration, either as past or to come, we find nothing to stop the progress of our thoughts, in the repetition of years, or millions of years: the farther we proceed, the more the idea :Tows upon us; and when we have vearicel ourselves whith vain efficts, we must own at last that we can no more amive at the end of duration, than at the end of number. It is true, the several seneations of men rise and disappear in very cuich successions; earth itself may decay ; and those brigit seminaries that adorn the firmameat of hearen, be extinguished. But the course of time will not be thereby disturbed; that flows uniform and invariable, nor is bounded by
the period of their existence. This double view of duration, as having already revolved through numberless ages, and yct still advancing into futurity in an endless progression, properly constitutes our ideas of eternity. We speak indeed of an eterinity past, an eternity to come, but both these are bounded at one extreme : the former terminates in the present momeat, and therefire has an end : the latter sets out from the same period, and therefore has a beginning; but, taken wesether, they form a line both wass infinitely extended, and which represents eternity in its full dimensions.
Scc. XIII.-The Ift: of Imanconity derited from the Cinsideration of Spure cvergrowing on all sides of us.
As, in the ronsideration of time, we fix upon the ferent moment, regariins; it as the midille point which divilus the whole lime of duration in: two e gual paws ; so, in the conaldation of same, that parncudar place in which we cxist is looked a,on as a kind of centre to the whole expmasion. From thence we let lasic our thenghts on every side-abere, below, around-and find we can :ruch on, in the repetition of miles, and millions of miles, without ever arriving at the end of the prowerm. it is nes diflicult, indecd, to arry our cen eptimb to the utmost boumls
 notice. But then the imapasaticn resis: nothere ; is sees immeasmo, h space:, teyon!, capable of receivint, new wothis, which it coll phrar, as rising one above anoher in eratless sheression. ation of space cire growite: on all sidics of us, and yet nower to be cinustol, is that whitines us the idea of immensity; which is in fect mothins clse but the infinty of number, apphied to certain pations of ex-

as extended every way around us, in infinite and innumerable right lines.

Sec. XIV.—Comfiound Ideas resulting from the Union of Perceftions of different Kinds.

Hitherto we have considered the mind as employed about one and the same idea, enlarging and diversifying it in various forms. We have seen it rising from the most simple and obvious notices to the conception of infinity itself; and taken a view of it in all the different stages of its improvement. Let as now proceed to the more complicated act of composition, when the mind brings several ideas of different kinds together, and voluntarily combines them into one complex conception. Such for instance, is our idea of a tune, as comprehending a variety of notes, with many different modulations of sound. And here it is to be observed, that though the complex idea may be excited in us, by hearing the air itself struck off upon a proper instrument ; yet, considered originally, it still belongs to this class of perceptions, which are distinguished as the arbitrary collcctions of the mind. It was the musician, or composer, that combined the several notes, and determined the order in which they were to follow one another; nor had that peculiar composition of sounds any real union in nature, before they were thus brought together in his mind. Of the same nature are most of our ideas of human actions ; for though many of them come to our notice by seeing the actions themselves, or hearing them described by others, as distilling, carving, treason, \&c. yet it is plain that they must have been projected and contrived in the mind of main before they had a real existence.

Sec. XV.—How the mind is determined in making these Combinations.

It is here that the understanding has tie greatest scope, and finds most employment for its active powers: nor indeed is it possible to set any bounds to the ideas of this class; the combinations already made being almost immumerable, and those yet in the power of the mind affording an endless diversity. It may nos, howerer, be amiss to consider low we conduct ourselves anidst so great a varicty, and by what rules we proceed in making those combinations to witicis we hase atilixed particulai' names, while others, perhaps, no less obvious, are neglected. The iciea of hilling, for instance, joined to that of a fallow, make; a distinct spectics of action, kiown by the name of garricide. It was doubides, as obsions to distimgisis betwen the killing of an old man and a child, which yet we find is not done; buhthese actions iciner con:prehembed under the feneril name of murder. By what views therefore does the mind resulate itsombinatoms? Why is it determined to siac collar lion of idens rather than another? This canme be well understorsl, without obsering, that it is tie end if lanFuyse to communicate our thoughts one to another. Words are the signs of our ideas, and serve to expers. the conceptions of the mind. Now it is appesent tiat such conceptions as are most apt to occur in the commere of life, would be first distimpuishad by patict:-
 toming these amons tiomselves, rendering this ei,... lutely necesbary. But as mathy of these conactunt. are coilections of different simple ider, hence we are insemsibly led to stech prowliar combinations, at ate mont servicuable to pappose of mutuad intere sumb an! communicatis

Sec. XYI-Illacts of Haman Actions ofien formed, before the actions themsetzes exis.
Let us suppose, in the first beginnings of society, a company oflegisiators met together, in order to consult on proper regulations for the govemment of the community. If they are men of prudence and foresisht, they will mathaly obser:e many new occurrences, ticely t a ane from this coal:tion of mankind, and 1har hang tocether in crowls. bohap the age in which they liec, has not protuced an instance of one man's killing another ; yct from the knowledge of their nun fame, and their power of doing hurt, they concure this as a posible case, and are willing to pacthe eramsi it. Thus all the ideas that catur int the wimper one of mader, are bromit torether, and uaticl into one conception, before the action itself reaify cists. It is nce, however, thought necessayy to intia into considuation the age of the person ; the chef thing in wiou beone to provert the putting an rand to another's hife ungetly, whether old or young; and herefore the fenalty equaly efiects both cases. fon win the orae to consider he retaton in which tie person killed may stansl to the maderer, here them appers a manitest diferace; as it adds to the ceme, when comaited upen a lenefactor, and rencurs it paraendy lemens in the cose of a father.'llis late, heretre is made to constitate a distinct bicies of action, and has a perulizu pexishment allotta to it. 'hus we see how men, wordin's to their cifereat maner of life, and the rubtions taey stand in to one and ide, are maturaly led to form sereal concerms of smple in. as, permaly to others, as toresecing they may have fres aciat cercuion to take wotice of suc: precise combinitions. And beruse it wuld be tadiolis in conversation, awy tine these
compley notions nccur, to enumerate all the ideas of which they consist ; themere, for the sake of ease and dispatch, they give them particular names, and thereby render the compositions lixed and permaricnt.
Scc. XVII.—The neccssity of Mutual Irteretars and
 fitex Illita.

That it is in this manner we come by cur comple: ideas, which multiply upon us according; as the exiyencies of society require, or our pursuit., method of lite, and different aims, throw roconions in cur way, of combining such and such perceptions torctico, mi., lit ise casily made to appear, by a short view of the cembinations themselves. Dumen actions, as urrumibi; most frequently, and aflording large matter o." cciversation, debate, and inquiry atong ben, have beca very nicely modified, and distimprished into classes, according to the several circumstances most iite! to attend them. In like manner, the arts and sectece, iaproportion as they are cultinuics, !catine; us inte, many compound views of thiners, wath ullorwise would never offer themselyes to the consideration of the mind; the complex ideas ol this sort, with the names by which the: are expressed, are, we find, the work of such particular nations, where these atis and seiences have chiefly flourished. The Grecks, for instance, excelled in learning and polite hnowledge; hence many of the terms belonging to rhetoric, poetry, philosohy, fhesis, st. come originally from their langrasce. sonto:n fortification has weeived its; reallest improrements among the limech; and accodinsly the i.feas and ternes of the art are mostly derined fiom writers of that mation. In Italy, architecture, momic, and painting, have been the great exercise of the men of genius; it is therefore anmont
them that we find the several complex notions belonging to these parts of stady, as well as tae names by which they are expressed; nor can we discourse accuraty and minutely of the above monionel arts, without hang recourse to the language of that climate. And if we clescend into the particular culings and professons of men, they have all their peonfiar ecifections of ileas, distinguished by their several names, and hardly known but to such as are converwant in that manner of life. Thus calcination, cohobation, fitrution, scc. are vords standing for complex ideas fequenty framed in the minds of chymists, and the eeore faniliar to men of that employment. Yet as these, and such like combinations, seldum occur in ton mon life, the gmendity of mankind, we sec, are ia a great mewore unacquamed with them.

 bue none to anser r them in another.
I misht pursue these speculations farther, and show how the seited fashons, customs, and manners of one nation, leading then to form many comples rivions whil:cume not so naturally in the way of another;
 and of course hew nomes appropriated to than in the lanyuge, to which there are no wodnthat answer in
 justice have intohned meny terms into the lag gish
 no otherpernle. Nor wond it be passible an ender these terms by any single words of anoticulanzoge; becallse, whe ficas themseles pheral not, there are no names porided on express tarm. In this case, thereitr, it becomes necusiay to use circumiocu-

in the collcction, if we would so express ourselves, as to be tiacicrsiood in the language of other nations.Nay, even among the same people, the change of custwit: and opinions frequently brings new sets of icieas, which, of course, must be distinguished by particular names; while, at lic same tiluc, the notions of former a!a s spow into disuse, and the vords answering them are wholly laid aside, or conploped in a signification dificent from what they haci ixfere.
Scc. XIX.— T\%in, too, the cause that Languages are in a herfhetual flux.
'ilus lanturges are in a perpetual fus, and by defres vary so much from their original fimme as to berome umint higible cron to the descendants of those whes speak them. If we run buek into the ages of f hisalry in ligelani, when tiats and tournaments were in foshisa, how many comples ideas, pectaliar to that rode re life, hatl we find i.. milam amons; the nen of that times, whish are now little known or attended
 s.ien s that have since takell plare, have led us into innmmemale vievs of thise, w which our fore-fathcrs incorproit it stathers. But I shall not push these riflertions any father, lexhe inar that what has been said wial be shlicient to steow line oritein and prowess of our anpommi ilens, and how the mind is directed in tice chonce of tice combinations it makes. We the ref !ew ced wo the consideration of abstract ideas. - hi h madic the subjet of the following :athole.

ART. II.
OF ABSTRACT OR UNIVERSAL IDEAS.

Sec. I.-General Ideas formed by the Abstraction of the Mi:ad.

Having dispatched what was necessary to be said concerning our compound ideas, considered merely as they are combinations of the understending, it is now time to explain how we come by our reneral notions which serve to represent to u; a multitude of individuals, and are the standarcis by which we rank things into sorts. And this, as we have before intimated, is done by the atstraction of the mind; which act may be extended to all our ideas, whether simple, compoind, or of substances. If, for instance, we fix our attention on any particular colour, as scarlet, we can late out the conedemention of all present circumstances, as the subject in which it inheres, the time and phace of seeing it, $\{x$. and retaining only the impression itsiff, make it a representative of that quality or appearance, whevever we chance to meet with it. It is thus that abstract and universal ideas are framed; for the mind regarding only the scarlet colour, which one day it observes perhaps in a piece of cloth, another in a picte:c, and a third in the runbow ; the appearance is conccived to be the same in all these objects, and therefore is called by the same name.
Sec. If. - A! the Percetions of the Lralerstanding jarticular.
But to cre: a little more closely into this matter, and show tiant these our general conceptions are the meac creatures of the tialerstanding, it may not be whiss to take ucice, that aleour perceptions of thinge,
whethe: we derive them from sensation or reflection, are of their own nature particular, whal represent to us singh, dicternmate dhegts. Wheh we see a horse, for instiars, in the ficids, our idea is that of an indivichal. If we hear a sound, it is conothons; parici:ler, and dificrent from what we hear at ally other time. Werey perctprion of the mind is distinct from wey other pereption; nay, and cuery idea brought into view by the imegnam, as when we frame the itwarse of a lion standings before us, is still singular, and represents a single oljewi.

But wien we come to take a viev of these several putionns, we readily cherve amons some of tiem a resembidure ; and framine to ourselves an idea of
 we thereby art a feneral mond appliculle to man
 another: in shape, wic, abid structure cif parts. The itca, which takes in oilly the purticulars of this re-
 amimai, bocomes of romb: common thall watars of that king, and is thereliore the reprememive of a whot class of inciuse Acombenty the name of that
 :heve, wise anl sumeme is found for the word

 What the mind confines itself to the consideration of infi:idth: and hann: an idea that comprehends such when under The wats or chas of thanes an-
 of the satoes. So a in ise is a certain revies of w-
imals, an oak is a species of trees, and a square is a species of four-sided figures.

Scc. IV.-The Idea of the Genus refiresents what is common to several Sficcirs.

When we have thus learned to rank individuals into sorts and classes, according to the resemblance found among them, the mind proceeds next to consider the species themaslues, and ofien in these too observes a certain likeness. Whereupon, throwing out all those particulars wherein the several species are found to disagree, and retumins only such as are common to them all, we therchy frame a stili more general icica, comprehending under it a raricty of different species. Thus a sparrow, a hawk, and eagle, Scc. are distinct species of birds, which have each their peculiar shape and make. They nevertheless resemble one another, in being covered with feathers, and provided with wings that bear them through the air. Out of these particulars we form a new idea, including all the common properties of the feathered kind; and appropriating to it the name of bird, mark by that word another class of things, of a higher order than any of the former. This superior division, which extends to several species at once, is called in the schools the genus, and is the second step the mind takes in advancing to universal notions.
Sec. V.-The Mind may advance by manifold Gradations, in rising from Particulars to Gencrals.

And thus have I given a short, but I hope intelligible account, of the business of genera and yifies. about which so much has been said in the writings of logicians. Sifccim, in strictness and propriety of speech, is such a rank or class of things, as comprebends unier it only individuals: Ecrus advances still
higher, and takes in a variety of distinct species. It is, however, to be observed, that the mind in rising from particulars to generals, does not confine itself to one or two gradations, but may carry its views through the whole extent of things, until at length it arrive at an idea embracing the universal compass of nature. For when we have ranked things into solt:, and reduced these again to the higher order or gr mu:, these swera are still found to resemble one another in, some particulars, which being collected into one idea, firm anew and more comprehensive division of things. This bird is a genus, embracing all the varieties of the feathered kind. riz. $/$ imphios the several specie; of hivin:s creatures which inhabit the waters. Quadrufted and insect are also miversal ideas, hat the: in many inferior distributions and classes. Yet alit these diffecont orders of beins, have this in common, that they are provificl with oryanical bodies, fitted for the purposes of life and spentaneous motion. An ide., thenefore, comprelenting only these last particulars, will equally belong to all the divisions lefore enumerated ; and the wowd animal, by which it is expressed, becomes a gencral name fon the several creatures enducel with life, selvie, and spontancous motion. If we a: for carrying our vicws still farther, and franing a get more miversfl notion, we can cast our cyes upon buh the amimate and inanimate parts of nature ; wherein we fond this mutual correspondence, that they exist, and combinue in being. This last islea, therefore, of bieige in g-ucral, comprehends under it all the varieties of thiness, and may be uninerally applied to whaterer has life or exisience ; so that in respect of the present frame of nature, it is the highest and most univers.al idea we !ave.

VI.-Whenre many intermedate Steps between the highiest Genus and lowest Species.

In this series of notions, rising one above another, in the degree of universality ; that division, which comprehends under its severa! senera, is called in the sciouls the ligher genus; which denomination contimues, until we arrive at the last advance of the understanding, when, being come to the most qReral of all ideas, that admits not of a superior, it Ts distinguished b: the a, me of genus generalissimum. In like manner the several genera, comprehended under a higher genus, are, in respect of it, considered as $\% / 4 \cdot$ cies; and as these two last hate species under them, the inferior divisions are, for distinction's sake, termed lowerspictics. Thus the progression continues, and when we come to the lowest subdivision of all, comprohondie,; only individuals, which, as I have before intimate, consitutes the proper species, this the scloobs cenominate the species sincialiwina. All that lie between it wim the highest diatibution of things, we the intermediate genera and species, which are tomat, cach in their turn, gento generaitus, or stecics aduar, acoung as we coneler thom in the ascan or cicueding scale of our ideas; or, to \leq peok in the inyome ol logicians, accomins to their ascent or ducent, in line jarevicam, niai. I should not have a.....! so fie into these rumen uisuisitions, had not
 cur in the risting of phitisoshers; insomuch, that wid out some hacwled ge of them, we must often be at a loss, in the pros.cution of these studies. Desides, it is both curious and useful, to see the gradual progres; of the inind, in its wivances from particular to suaval concertions-io observe it rangios its ideas into chaseco, ard establishing in just and rocular sub-
ordination in its views and notices of things. This is the shortest way to knowledge, and affords the best means of preserving the order and due connexion of our thoughts, so as to make them subservient to the increase of science. For when we see how things comprehend, or are comprehended in, one another, we are able to discover the mutual dependence oif all the several branches of knowledge which leads us into the true and natural method of conducting our understandings in the search of truth.
Sec. VII.—Gencral It'rivthe Cratures of tht Understandins.
From what has been said, il is evilent, that general ideas are the createmes iand inventions of the understaiding. Nature, it is ruc, in lle production of things, mata; meny of them alike : but it is the mind alone, that collects the particulars in which they :rerce, into one ide:, and sets it up as a representative ois..uny individuals. And now I think we may venture upon that much-agitated guestion, where do the serncta and species ol thines exist? To which I athster, in the mind. Universulity belonge not to things themselver, it being apparent, that they are all particular in their existence. Howorer, as the: often hate many prap rties in common, the undersimding, by unitins these into one conception, obtains a general iil.-t, under which it ranks all the several rbjects wherein these properties ane found. So far indeed we must allow, that the particular combination of properties, which constutus the genus or species, exists in all the individhals refermed to that genus or species ; lat then it is in comjuction with other poperties, by which these indiniants ace distinernishod from one athother. Thus the coilcetion of smpic in, w, sisnilied by the word bird, is to be found, ior instance, in a
hawk, or any other single animal, to which we apply that general name : but the notion itself, abstracted from all the particulars to which it belongs, has evidently no existence out of the understanding. There is not a being in nature that can be called a bird in general, or that does not necessarily imply, in the very conception of it, several simple ideas, besides those marked by that word. For the name, in this case, signifies no more than an animal covered with feathcrs, and provided with wings, without regard either to shape, bulk, or the particular time and place of its existence. These last considerations, however, are inseparable from the reality of things, and therefore must be added to the general idea, before we can conecive any thing conformable to it actually brought into being.
Sec. VIII.—Considered afart, they exist only in the Mind, but in conjunction with other Ideas in the individuals comitrehended under them.

Hence we see at once, what sort oí an existence general natures have. Considered arart, and by themselves, they are wholly the wommanship of the understanding, and derive their being and reality from it; but viewed in conjunction with other ideas that co-exist with them in the several objects of nature, they are to be, found in the individuals to which they refer ; and therefore, according to inis way of conception, may be said to have an existence in them. Thus, so long as the ideas answering to the words man or iref, continue fenceal and undetermined, they have no real objects answering them in nature; nor can the collections of simple ideas, marked by these names, whith all others are supposed exclucded, exist any where out of the understanding. Nevertheless, as all the simple ideas, included in the general notion of
man, are to be found in every particular man-and all those implied in the notion of a tree, in every particular tree-hence the general nature of man, exists in every individual man, as does the general nature of a tree, in every individual trec.

Sec. IX.-Difference of Ieleas considered as comfound and as universal.

One thiner still remains to be observed, with regard to these our seneral ideas; that, though many of them are evidently combinations of different simple ideas, and according to that way of considering them, are included in the first division of our complex conceplions, those, namely, framed by the composition of the mind; yet we are carefully to distinguish between an idea, as it is compound, and as it is universal. In the first case, the mind chiefly considers the several ideas that are combined together ; 1%, in other wools, all the attributes, qualities or parts, that are conn. ined in any idea. Thus the idea of a bird, includes life, sense, spontaneous motion, a covering of feathers, wings, *r. none of which can be left out without destroying the very mature of the itca, and making it something quite differnt from what it was before. This way of considering thines accomedin; to the number of their pai:, and properties, is called by logricians the comframsion of an iclea. But the universulty of our notions implies quite another turn of thinking, in as much as it fixes the regrard of the mind, upon the sibjet to which our ideas extem, or the individuals and sperics comprehended under them. In this sense, the inle: :unswering to the word bird, takes in the sevcr.ll species of the feathered creation, the hum \%, the cugle, siurrom, lark, and innumerable others, to all which it may, with equal propriety, be applied. Alad bere it is remarkable, that the idea loses nothing of
its force or comprehension, by being restricted to a particular kind. When I say the bird of Jove, though in this case the idea is restrained to the eagle alone, it still remains as distinct, and includes as many simple ideas in its composition, as when, before, it was cxtended to all the different tribes of feathered animals. Sec. X.—The comischension and extension of our Ideas.

We see, therefore, that our compound ideas may continue the same in respect of their attributes, or the number of parts, and yet vary considerably in the degree of universality. The general idea of man is the same, whether applied to the whole human race, or those of any particular nation. When I affirm, for instance, of mankind in general, that their knowledge falls shori of perfection, and afterwards make the like observation of the men of the present age ; in both cases, the wurd man stands for one and the same collection of simple ideas; but in respect of the individuals to which it is applied, there is a great and manifest difference. That is, the term man, denotes one inrariatle compound idea; which, notwithstanding, consilered as a tenceal notion, may be contracted or enlarged at pleasture. And as in the former case, the several parts of the compound idea are called its comfrwousion; so in the latter, the individuals, to which the universal idea is applied, are called its taicnsion. I might add many more observations on this subject, but choose rather to stop here, having said enough to explain the dificence beaween compound and abstract ideas, and show the reason of my ranging them under distinct heads.

ART. III.

OF OUR IDEAS OF RELATIONS.

Sec. I.-Ideas of Relations exceeding numarous.

Icome now to the third and last division of thase ideas, which I consider as the creatures and worsmanship of the unilor indus; such, namely, as arise from the comparing of t.iniw, one with another. I^{\prime} (io the mind, in it's view, is not tied to sin, le objerts; but can examine dair references and respects, in tegard to others, brour, h urber consideration at the same time. And when it docs: and lience derives new notices of things, the ideas thus got are callil reations, and make; I wia apt to think, the biscst chas of all our perceptions. luo every sinerle object int admit of almost innumerable comparisons with others, and in t is sense may become a very picatitil source of ideas to the umberstomling. Thus, if we compare one thing with another, in respert of butk, We sce the ideas of greater, l sw, or cyulisn; if in respect of time, of okif: and ye: «ar ; and :., fur other
 without end ; whence it is cas? to concei.e. how bry extensive this tribe of our perceptions mas: be

Sec. II.- 11% chiefly ditrmined to haticular Comitar-

I shall not pretend to trace out these ideas partictlarly, nor indecd so much as to enumerate their sereral divisions; it wing enough to chswer, that here, as well as in the ctuce kinds of cur cmande: ideas, we bound oursetes, for the mast part, to ath cumparisurs, as the exigences of sechety, tie wants oflic, and the different pruiemetons oi men, reniler neces-

the relations of things, according to the degree of importance they appear to have in these respects. The relations of men one to another, arising either from the ties of blood, their several ranks and places in the community, or a mutual intercourse of good offices, being of great weight and concern in the commerce of life, have in a particular manner engaged our attention, and are therefore very minutely described.For the same reason, men have found it necessary, to determine, as exactly as possible, the various dependcuce of titigs, as their happiness is nearly connected with this lnowludre. When we consider objects merely in repect of exiscence, as either giving or recsing it, wic come by the ideas of cause and effect: nus: need I mention how much the welfare of mankind depends on an extensive view of things, as they stand cinacted in this relation; it being evident, that the se:eral schemes and purposes of life, are all conditeter upon a previous supposition, that certain known cutse, will have their usual regular effects, and such and such actions be attended with such and such conseguences.
Sec. IiI.—Relu:ions of Creator and Creature, Ec.
But there are other relations of this kind, besides those that recaid merely existence; as when we also take into the account the additional gifts of a capacity for han jnes, and the means of attaining it ; which conctiones the relation of Creater and creature, in the moz: ariemn acceptation of these words. Again, when we co:sider the great Author of our being, not only as the Crecior of the universe, but also as preserving one: holding it together, and presiding over the present fume of things wit. uncentrouled dominion; he then ar:ears under the notion of a moral Governor, to whom

make of those powers and faculties we derive from lim. Now as it is of the highest consequence for men, not to be unacquainted with these, and such like rclations; hence we find, that the wisest nations, and such as best understood the true application of the powers of the mind, have always made it their chict study to resulate and ascertain these ide ts, and trace them in all their conerguences. And thus we mey, in some measure, perceive how the mind procests in comparing its ideas torgether, and by what views it is chichly govemed, in franing the conplax motas of this clase, by which it represents the wasenis habitudes of thimys, I shall only atd upon this sulject, these 1wo observations.

Scc. IV.—Our Altras ef retidions werge cirer and distinct.
First, that our ideas of relations, are for the most part vory clear and distinct. For the consaming of things together, being a woluntary act oi the mind, we cannot but suppose that it nust be a"puainted with its own views in the comparison; and of course have a clear come copion of the foundation of that :clation, it sets is.alf to empuire inte. Thus the relation of cause and ffice, implying only that one thins rosunes, or is produced by another, whish motumis are always dintinctly setted in the understanding before it foes abral to make the comparison; it is evident, that the idea represeming; this mutual respect of abjeres, will be no less clear, than are the notions themselves upon wh ich the crelation is fomadel. Aad what is still Dome remarmanc of the idea, uf this class ; they coase not to be distinct, even where the subjects compared are but wo inporiectly known. For I can well chon:f, conccic, that one thing has produced anothc: anc: that therefore they stand related as cause and ctlet, though my ideas of the things themsein es may
perhaps be ver: \quad biscure, and come far short of representing their rial nature and properties. I doubt not Het it will be readily o med, that our idea of the uniwers, consile at as comprianding the whole frame of reated thinss, is rery i.anternite; and I think it is st mone ament, that our rotion of the Supreme Beins coms not up to the excellence and perfection of his natue. Tet we very well understand what is gicant if calling God the Althor of the world; and thery tie compehend not the manner of his producburs it, find no diffengy in framing the ideas, the relai \because evorls C'reutr and creature stand for

I have yot another ciservation to make upon this : hiect; and it is, that cur itleas of relations are anong the most important conceptims of the undersonling, and aford the largest fill! for the exercise and improvement of human kiowledre. Most of rur engues regard retive irlas, wind ane set on f not with a viow to investifate the mutual habitudes It thens. The mationaticiun has then quantity L his porinere, and teaches us how to compare nuayriedes of diticant firures ard climensions, in order
 ons phitosopher ataches himself to the chan of causes and eficis, and ende wors intace oat the vanos
 whither do all our resca"les tend, but by mens of cerain known premertes awd welions, to ful ot che sthat starid somesow comechad withtiem? As fre the imatetares of these conentions, he one can call that in cuestior, whondicts; tiat fom ou: whations to ou: Creator and one another, arise ali tie duta of

the several objects of nature, to the organs of the bodi, and facuitics of the mind, is that by whiciane we eat jedge of what will procure us happiness or misexy. Whence it is evident, that without an exate him,widge of these relations, we must wamder on in life with great uncertainty, and may ofton plunge int, calamities and misfortures,, y those very pustin, from which we expected nothing but joy and peasun:

Scc. VI.-Realitul:tion.
Thus have I gone throus the suav divisiens of wer ideas, which I have cadenvored to reperem in such a manner as their vabl extent may mosh (asis. apper, and the conduct of the mind in framing then be distind th apprelicaded. I miogh: casiby man intw other distinctions, by conshenta; them as clear or chereme, achemat: or itadequate, tres or also. I. La, limits of this tract will not allow my canas: bance finly into the subjert, and a think it the $k .$. 1.ealub, becanse the very manes are almost sufirinut, to condey a iaction of these sereral kinds of ideas int, the aind. But as the division explaned above seeme; to be in prat impertance, twards setting in the wa-

 ranover it again in as few word, as porble, that the whole prowens may be sech at once. Cotr ide.s are all icticalinta the mathertanding, either liy semsation or relicxim.' 'thie, lwacter, is obserable, that one and the same objent often cxcites a varity of pereptions at once, which are ne:ontlal", readily distinWhished b; the min!, and appear car h under a form peruliur twitself. These constitute oun prinary and
 in as nowh a a 19 are entirely void of platatit, and
camnt be divided into two or more different ideas. They are also the materials out of which the others are formed, and are thercfore, by way of distiction, cabd simple ideas. But the mind, though it has no power cuar these, either to fashion or clestroy them, can yet combine thea in an infinite number of ways; add firom their various combinations result all our compla: idea, which are of two pincial kinds. First, rech as are derived from withoit, and represent those consmations of simple ideas, that have a real exisitnce in nature. Of this sort are all cur ideas of sub:tancos. Socom!ly, the conceptions formed by the mind itsilf, arbitrarily uniting and putting together its ichers. Athias this makes by far the largest class, and womeleads all those ideas which may be properly terned ctia ow, as being the real workmanship of the understouting; so they tall very natually under three disiuct lewis. For either tice mind combines several simple ichas tosceser, in order of form them into when epta, in wheh the number and quality of the idas united, are principally considred; and

 prand, or ofsubstances; and. Ication out the circumsiences of thene, place, real caistcres, and whatever wasers it particular, whitits the apmanance alone, and nuses that a ropesmentive of an the kind; whence condistacet and unimisul ideas are derived: or haty, it conpares thensone wan anoup, cxamines their muthai comoxions, and therly furmines itacif with a now set of noinens, incon by the mame
 nate by no means the least imporent class of aur percepions. e 'ji s dividign of curdow, is it seems

Lelieve it will be found to comprehend them in all their varieties. I shall therefore now procced to offer soille obserations upon language, as being the great instrument, by which we are enabled to make our ideas and perceptions known to others.

CIIAP. V.

OF WORDS, CONSIDERED AS THE SIGN OF OUR LDEAS.
Sec. I.-Wiociu fumish the MAans of recording our

W_{t}e have secn how the mind comes to be fist furnisher! aih ideas, and by what methods it contrives to liwe iy and enlarere its stock : let us now consider the means of moliegr known our thoughts to odices, that we may not only moderstand bow homsledse is ecruine!, butains in what mamore it mity be commu-

 "ilin limme of our kind, hats provided us with orpans fitted to fimme artionde smorls, and siten us also a

 cotabinines surh a ernmexton between tien, that the aperaratace of the idea in the understanding always
 which it in expered; is, in like mammer, the hear-

which it is made to stand. And thus it is easy to coniccive, how a man may record his own thoughts, and bring them again into vicw, in any succeeding period of life. For this connexion being once settled, as the same sounds will always serve to excite the same ideas: if he can but contrive to register his words, in the order and disposition in which the present train ol his thoughts presents them to his imagination; it is evident tee wiil be able to recall these thoughts at pleasure, and that too in the very manner of their first appearance. Acrordingly we find, that the inventions of writing and painting, by enatling us to fix and perpetuate such perishable things as sounds, have also furnished us with the means of giving a hind of permanency to the transactions of the mind, insomuck that they may be in the same manner sutjected to our revici, as any the other abidinig objects of nature.

Sec. II.-Aid of the mutual Communication rf Knozi:edge from one Man to another.
Pat besides the alility of recording our own thoughts there is this furthe: advantage in the use of externat si, ns, that they chable us to communicate our sentiments to whers, and also iccere infurmation of what passes in their breasts. For any nember of men, loaving aspert to establish the same sounds as signs of the ame ideus, it is apparent, that the repetition of these utuds must excite the like perceptions in each, and ciente a perfect correspondence of thoughts. When, for instance, any train of ideas succeed one another in my mird, if the names, by wich I am. wont $: 4, \ldots, \ldots$, them, bare been annexed by thas wilh wom i converse, to the very same set of ideas, nothing is mae coidcat, than that by repeating those nam:, according to the tenc: of my pusut concep-
lions, I shall raise in their minds the same course of thought as has taken possession of my own. IIence, by bare!y attending to what passes within themselves, they will aloo beonne acruanted with the ideas in nay own understanding, and have them in a manner daidlecere their hic:. So that we here clealy perveve how a man my commonicte his sulinube, knowlerlere, and disenveries to others, if the hasware in whin he conversts, be extensive awng tomath all the if as and transactions of his mind. Sut as this is mo always tho case, and mon are cfien obliget an invent terms of their own, to express 1 wor thes and ronceptions of thiness ; it may be unsed, low, in these ciremstances, we can become acquainted with the tionerlits of another, wien he makes tise of words to which we have never amexed any ideas, and which © © conse, can ruise no perceptions in our minds? Now, it order to unveil this mystery, and give some little i:s ight into the foundation, growth, and himpencbuth of taly, 1 arye, the following observations will, I am apt to think, be found of considerable moment.
ser. III.—simflu didus camot be comered into the

list, that no word can be to any man the sizn of an idea, it that idea romes to have a real ceisunce in lis moinl. Ior names being only so far intellyiIf., as tic! den-tic knows internal conceptions, where tey have whe such to answer them, there they aie phial shan!s without sigmifation, ant of combi--rme: minmation or haowlalge. But no somicr ore tie ideas w, whin they blong raised in the undethumlin. than finding it casy to cone them

therefore, to be considered, is, how thesè ideas may be conveyed into the mind; that, being there, we may learn to connect them with their appropriated sounds, and so become capable of understanding others, when they make use of these sounds in laying open and communicating their thoughts. Now to comprehend this distinctly, it will be necessary to call to mind, the before mentioned division of our ideas into simple and complex. And first, as for our simple ideas, it has been alieady observed, that they can find no admission into the mind, but by two original fountains of knowledge, sensation and reflexion. If therefore any of these have as yet no being in the understanding, it is impossible by words, or a description, to excite them there. A man, who had never felt the impression of heat, could not be brought to comprehend that sensation, by any thing we might say to explain it. If we would really produce the idea in him, it must be by applying the proper object to his senses, and bringing him within the influence of a hot body. When this is done, and experience has taught him the perception to which men have annexed the name, heat, it then becomes to him the sign of that idea; and he thenceforth understands the meaning of a term, which, before, all the words in the world would not have been sufficient to convey into his mind. The case is the same in respect of light and colours. A man born blind, aad thereby deprived of the only conveyance for the ideas of this class, can never be brought to understand the names by which they are expressed. The reason is plain; they stand for icleas that have no existence in his mind ; and as the organ appropriated to their reception is wanting, all other contrivances are vain, nor can they, by any force of description, be raised in his imagination. But it is quite otherwise in ou: complex notion. For these being
no more than certain combinations of simple idecs put together in various forms-if the original ideas, out of which these collections are made, have already got admission into the understanding, and the names serving to express them are known-it will be easy, by emumerating the several ideas concerned in the composition, and marking the order and manner in which they are united, to raise any complex coniception in the mind. Thus the idea answering to the word rainbow, may be readily excered in the imagination of another, who has never seen the appearance itself, by barely describing the figure, laremeness, position, and order of colours ; if we suppose these sereral simple ideas, with their names, sufficiently known to him.
Sec. IV.-The Nature of Complex Idcas Lefinabie, those of Simfile Ideas not.
And this naturally leads me to a second observation upon this subject, namely : that words standing for complex ideas are all definable; but those, by which we denote simple ideas, are not. For the perceptions of this latter class, having no other entrance into the mind, than by sensation or reflection; can only be acquired by experience from the several objects of nature, proper to produce those perceptions in us. Words, indeed, may very well serve to iemind us of them, if they have already found admission into the understanding, and their connexion with the established names is known; but they can never wie them their original being and exisience there. And hence it is, that when any one asks the meaning of a word denoting a simple idea, we pretend not to explain it to him by a definition, well knowing that to be impossible ; but supposing him alteady acquainted with the idea, and only ignorant of the name by which
it is called, we either mention it to him by some other name, with which we presume he knows its connexion, or appeal to the object where the idea itself is found. Thus, was any one to ask the meaning of the word qulitc, we should tell him it stood for the idea as albus, in I.aitn, or blanc, in Fronch; or, if we tho't him a stranger to these languages, might appeal to an object producing the idea, by saying, it denoted the colour we observe in snow or milk. But this is by no means a dinition of the word, exciting a new idea in his understanding; but merely a contrivance to remind him of a known idea, and teach him its connexion with the established name. For if the idea after which he inquires, has never yet been raised in his mind-as suppose one, who had seen no other colours than black and wuhite, should ask the meaning of the word scarlet-it is easy to perceive, that it would be no more possibie to make him comprehend it by words, or a definition, than to inculcate the same perception into the imagination of a man born blind. The only method in this case, is, to present some object, by looking at which the perception itself may be excited; and thus he will learn both the name and the idea together.
Sec. V.-Exherience and Observation bring Mcn io an Asreement in the Names of Simpl! Idcas.
Should any one's curiosity now prompt him to enquire, how it comes to pass, that men agree in their names of the simple ideas, seeing they cannot view the perceptions in one another's minds, nor make known these perceptions by words to others; I answer, that the effect here mentioned is produced by experience and observation. Thus, finding, for instance, that the name, heat, is annexed to that impression which men feel when they approach the fire, I
make it also the sign of the idea excited in me by such an approach, nor have any doubt, but it denotes the same perception in my mind as in their's. For we are naturally led to imagine, that the same objects operate alike upon the organs of the human body, and produse an uniformity of sensations. No man fancies, that the idea raised in him by the taste of sugar, and which he calls sweetness, differs from that excited in another by the like means; or that wormwood, to whose relish he has given the epithet bitter, produces in others the sensation which he denotes by the word swect. Presuming, therefore, upon the conformity of perceptions, when they arise from the same oljects, we casily aspere as to the names of our simple ideas; and if at any time, by a more narrow scrutiny into thimes, new ideas of this class come in our way, which we choose to expres; by terms of our own invention ; these names are explained not by a definition, but by referring to the objects, whence the ideas themselves may be obtained.
Sec. VI.-The Comvelaner of Complixx Illeas by Difinitions, a quise Contrivance in Nidure;
Being in this manner farnished with simple iteas, and the names by which they are copren, the meaning of terms that stand for complex ideas is easily attained; because the ideas thomselves answeriag (1) these terms, may be conveyed into the mind by definitions. For our complex notions, as was alrearly observed, are only certain combinations of simple idem. When, therefore, these are enumerated, and the mianner in which they are united into one conception explained, nothint: more is wanting to raise that conception in the milct:turlin: ; and thus the term denoting it comes , coure tw be understood. . Ind here it is worth winic to reflect a little upon the wisc contrivance
rif nature, in thus furnishing us with the very aptest mans of communicating our thoughts. For were it act so ordered, that we could thus convey our complex ideas from one to another by definitions, it would in many cases be impossible to make them known at sll. This is apparent in those ideas which are the proper work of the mind. For as they exist only in tie understanding, and have no real objects in nature, in conformity to which they are framed-if we could not make them known by a description, they must lie forever hidden within our own breasts, and be confined to the narrow acquaintance of a single mind. All the fine scenes, that rise from time to time in the poet's fancy, and, by his lively painting, give such entertainment to his readers-were he destitute of this faculty, of laying them open to the view of othcrs by words and descriptions-could not extend their influence beyond his own imagination, or give joy to any but the original inventor.
Sec. VII.-And of great arail towards the Impirovement af Knowledge.
There is this farther advantage in the ability we enjoy, of communicating our complex notions by definitions; that as these make by far the largest class of our ideas, and most frequently occur in the progress and improvement of knowledge; so they are by this means imparted with the greatest readiness, than which notions could tend more to tie increase and speadias of sitence. For a cunnity in se, in ;erused, and if the terms of it are whit uncersomo, the Fice isist fuas an easy almission into the mind. Whereas ia simple percepaions, where we are refer-
 come at, as is smanam ine case, the hames, iy

But new ideas of this class occurring very rarely in the sciences, they seldom create any great obstruction. It is otherwise with our complex notions; for every step we take, leading us into new combinations and views of things, it becomes necessary to ciplain these to others, before they can be mate acquainted with our discoveries. And as the manner of definitions is easy, requiring no apparatus but that of words, winch are always ready, and at hand ; lence we can, with the less difficulty, remove such otstactes, as mis ht arise from terms of our own invention, when they are made to stand for we: complex ideas, sugges ed to ince mand by bone per sent train ef tiant. ins. And tens at last we are lat into the nystery haied at in the beghimise of the chapter, viz. how We:..ey becunce andamed with the therghts of an*. \because, when he makes use of word to whech vec lave an yet joined no aceas. The uhswer is sisuser, from what has ben already sume Ii the terans denote

 hamwded thas way can le crachad ondy dey exeri-

 kimelula, it will be nechatry to lay it a lithe more

$$
\begin{aligned}
& \text { Covilo facus. }
\end{aligned}
$$

But then it is to be observed, that in making these collections, the mind is not always tied down to the immediate view of the simple perceptions out of which they are framed. For if we suppose the understanding already furnished with a considerable stock of compound notions, these again may be made the constituent parts of others still more compounded, insomuch that the new idea thence arising may be termed a combination of complex conceptions. Thus the idea annexed to the word animal, includes many perceptions under it, as life, sense, spontaneous motion, \&c. In the like manner by the term ration$a l$, we denote a variety of simple ideas. If now combining these two conceptions together, we form the still more complex notion of a rational animal; the idea thus got is truly a collection of compound notices. In a word, the same thing happens here as in numbers, which we may consider not only as various collections of units, these being indeed their original and constituent parts ; but also as sometimes composed of other lesser numbers, which, all put together, make up the respective sums. Now in tracing any very large number, when, for the ease of the mind, we consider it at first as composed of various others still less-if we next talie these less parts to pieces, and pursue them continually, until we arrive at the units out of which they are composed; we thereby totally unavel the collection, and being able to push our researches no farther, rest satisfied in the view thus offered to the understanding. Just so it is in the examination of our complex ideas. For when any very compounded notion comes under the inspection of the mind, in order to be traced to its first principles-:\%e begiu with resolving it into other ideas kes complicated; and taltine these again to fices, cie: by un, still go we with the search, until
we have broken the whole into our first and simple perceptions, beyond which the pursuit cannot possibly be carried. And this is the reason why I have all along called our simple ideas the foundation and ground-work of human knowledge ; because, in unravelling the conceptions of the mind, we find ourselves at length bounded by these ideas, which are indeed the last resort of the understanding.
Sec. IX.-The Names of Simpile Ideas may be considered as the Elementury Parts of Language.
From what has been said, it will be casy to conceive how, in defining a term, standing for any rery complex idea, other terms may be introduced, that utso denote compound idcas, though of an infcrior class. For the first idea being resolvable into others Jess complicated ; the definition, which enumerates these component ideas, must consist of the names by which they are expressed. And if it so happen, that the ideas of this second class are also unknown, their terms, too, ought to be still farther defined. In this manner may a series of definitions be carried on, until we arrive at the names of simple ideas, which not being definable, the analysis must necessarily cease. And thus we see, that as our simple ideas are the materials and foundation of knowledge, so the names of simple ideas may be considered as the elementary parts of language, beyond which we cannot trace the meaning and signification of words. When we come to them, we suppose the ideas they stand for already kinwn; or, if they are not, experience alone must be consulted, and not definitions or explications. And here it is well voith our notice, that as the names of these our original conceptions, constitute the primitive and fundamental articles of speech, upon which the whole superstructure of human language is built,
so they arc, of all others, the least doubtful and uncertain in taeir signification. Because, standing each for one simple perception, not precariously excited in the mind, bet the effect of certain powers in things, fitted to produce that sensation in us ; there is no danger of error or mistake. He that once knows suyethiss to be the name of the taste received from sugar, whiteness of the colour in snow or milk, and hiat of the sensation produced by approaching the fire, will not be apt to misapply those words, or annex them to perceptions of a different kind. And as the names of complex ideas may all be resolved into these primitive terms, it is apparent, that we are sufficiently provided with the means of communicating our thoughts one to another; and that the mistakes so frequently complained of on this head, are wholly owing to ourselves, is not sufficiently defining the terms we use, or perhaps not connecting them with clear and determinate ideas.

CHAP. VI.

OF DEFINITION, AND ITS SEVERAL KINDS.
Sec. I.-The variety of Definitions procceds from the various Atptlication of Words.

Having laid these foundations, shown what words are, and what are not definable, and taught the manner of resolving our notions, as well as language itself, into its first and original principles; we now proceed to explain a little more particularly the nature of a definition, and the several kinds made use of, according to the difierent views men have in communicating their thoughts one to another. Definitions are intended to make known the meaning of words stand-
ing for complex ideas ; and were we aiways careful to form those ideas exactly in our mincls, and copy our definitions from that appearance, much of the confusion and obscurity complained of in languages might be prevented. liut, unhappily for us, we are by no means steady in the application of names, referring them sometimes to one thing, sometimes to another; which often creates great uncertainty in their signification, and obliges us to give a diinsent turn to our dicinitions, according to the different reference of the te:ms defined. In order, therefore, to render this whole matter as clear and obvious as possible, we shall first consider to what it is that names, in the use of language, are most commonly applied; and then from the variety of this application, curde:vour to account for the several methods of decining, mentioned in the writings of logicians.
Sec. II.—Hiord.s have a threfish Refirence; to our osen Idras, those : f others, and lice real being of things.
Words then have manifestly a threefold reference. linst, and more immediately, they denote the ideas in the: mind of him who uses them ; and this is their wuc and punce signification. Whon a man speaks, it is that lie may be understood; and the words he e:ajfoys to comvey his thoushts, are such as by we he has leamed to commed with the ideas then present to his mind. But liceanse hore with whom we converse, ate also suppoid to huow the meaning of the terms we un, helle, secondly, we consider our words as su!p, likewise, of the ideas in their minds; and this is the fonndation of what is called propricty in lans, their word:, as are commonly applied to them by those of most undersianding in the country where they live. The third and last reference of words is to things
themselves. For many of our ideas are taken from the several objects of nature, wherewith we are surrounded; and being considered as copies of things really existing, the words, by which they are expressed. are often transferred from the ideas themselves, to signify those objects which they are supposed to represent. Thus the word, sun, not only denotes the idea excited in the mind by that sound, but is also frequently made to stand for the luminous body itself, which inhabits the centre of this our planetary system. Now, according to this threefold application of names, their definitions, and the manner of explaining them, must be various; for it is one thing to unfold the ideas in a man's own mind, another to describe them, as they are supposed to make their appearance in the minds of others; and lastly, it is something still different, to draw images or pictures, that shall carry in them a conformity to the being and reality of things. But we shall treat of each in order.
Sec. III.—Defnitions of the Nume teach only the Connexion of our Words and Ideas, and are therefore arbitrary.
First, then, when we consider words, as sisns of the ideas in the mind of him who uses them; a definition is nothing else, but such an explication of the meaning of any term, as that the complex idea annexed to it by the speaker, may be excited in the understanding of him with whom he converses. And this is plainly no more than teaching the connexion of our words and ideas, that others may understand the sense of our expressions, and know distinctly what notions we affix to the terms we use. When we say, for instance, that by the word square we mean a figure bounded by four equal sides, joined together at right angles; what is this but a declaration, that the idea
of a quadrilateral, equilateral, rectangular figure, is that which in discourse or writing we connect with the term square? This is that kind of definition, which logicians call the definition of the name ; because it discovers the meaning of the words or names we make use of, by showing the ideas for which they stand. Now, as sounds are of themselves indifferent to signify any ideas, fience it is plain, that the definitions of names are arbitrary, every man having a liberty to affix what notions he pleases to his words. But the convenience of communication making it necessary for men speaking the same language to agree as nearly as possible in the signification of sounds, a conformity has accordingly been studied. Nevertheless, we find that differences will, from time to time, creep in, which must create great confusion in men's discourses and reasonings, if they are not careful to define their terms, that their signification may be kept fixed and steady, and lie always open to the view of the mind. The writings of the mathematicians are a clear proof, how much the advancement of humen knowledge depends upon a right use of definitions. loo as by means of them they every where preserve the same determined significations to their words, hence there is little dispute as to the meanim; of their expressions, almost all men understanding them in the same sensce. And thus it happens, that such as apply their thoughts this way, having perfectly the same views of things, reedily comprehend the discoveries alrealy made, and are thereby enabled with joint labour, and an ceart conformity of notions, to carry on the improvement of this branch of knowledge. And if men in other parts of learning, were alike careful to fix the meaning of their terms, the progress of science must be greatly furthered, and all those verbal disputes, thet now so much interrupt the course of our improventats, might be prowited.

Sec. IV.-Definitions of the Name not always true and real Definitions;

This then ought to be our first care, when we enter upon a design of illustrating any particular branch of study; to ascertain our ideas, and mark the names by which they are expressed. And although definitions of words are indeed arbitrary, (for a man may affix what ideas he pleases to his terms, nor can any one contest this liberty with him,) yet it will be proper to conform, as near as possible, to common accep1ation, that thereby our thoughts may find a more easy and ready entrance into the minds of others. If it should now be asked, what are the rules of a good definition; I answer, that as in definitions of the name, we aim at no more than teaching the connesion of words and ideas; every contrivance, by which we are enabled to excite the idea annexed to any word in the mind of another, will serve the purpose of a definition. Now the ideas we join with our words are of iwo kiads: cither such as we hate reason to believe are already in the minds of other, though perhaps they know not the names by which they are called; or such as, being new and of our own formation, can be no othewise made known than by a description. In the first case, thacre is no necessity for laying open the idea itself, because being alrcady known, any contrivance to remind us of it is sufficient. When we say, for instance, that a clock is an instrument, by which que wasare tha hours of the day; it i, plain, that the idea answering to the word clock, is not here undided; but we being before hand stijoosed to have an idea of this instrunent, are coly tughty what name it is callec. Now in this sense, the nemes of oven simple ideas nay le cownel. For, by saying that shitw is the colour we clsare in shm or milk, heat the sensation produced by arpouching the fire, we
sufficiently make known what ideas we connect with the terms, white and heat, which is the true purpose of a definition of the name. Hence it appears, that many of those explanations of words, whirh lorgicians call definitions of the name, are not deflititivis in a true and proper sense, that is, such descriptions of ideas, as would serve to excite them in the mind of another, even supposing him before wholly unacquainted with them, but merely contrivances to remind us of known ideas, and teach us the names by which they are called.
Scc. V.-But only qohen they Coincide zvith the Definition of the Thing.
But where the ideas we join with our words, are now and of our own formation, there they are to be lat ofon by a description, beathe, being stippod moknewn thoners, we nast first raise them in their minds, before they em leam to connect them with any paricmar nanes. Ant bere it is, that the definition of the name concides with what besicions call the definition of the thine, as in either case we procew be und thing the icca itself for viluch the term difined stanio. And inded this anne is whet constitueses a definition, in the true and preper sense of
 we come to chsibier the terms we use, as refored to the 1 a d oject: of natime. We shent therefere postproe this comatration of the demition of the rane, till we cone to trat of the definition of the thit an, whon it will mow matually lall in our way. It may m, hewore be aniss to mome, than when we say te defnitens of the mon alle atitrary, we mean In that the den ripetion of ideas arese wo. Ion

is more evident, than that the description must be such as to exhibit that precise conception. But then the connexion of any idea, with the name by which it is expressed, being, as we have said, wholly arbitrary, the considering the description of that idea as the definition of that particular name must be so too. So that although definitions, considered as descriptions of our ideas, are steady and invariable, yet the application of them to particular sounds, (which is all that we understand by the definition of the name) is wholIy a work of our own free choice.
Sec. VI.-Definition of Words according to the common use of Language not Arbitrary.
But secondly, besides considering words as the signs of our own ideas, we are also very apt, on many occasions, to reier them to the ideas in the minds of other men. Now, to define a term, in this view, is to investigate its meaning or acceptation, according to the common use of speech. Here then it is plain, that definitions are not arbitrary. For although in regarding words as the marks of our own ideas, we may give them what meaning we please; yet when we consider them in refereace to the thoughts of others, they have a fixed and steady signification; namely, that which custom and the propriety of lansuatge has assignerl them. The words, ability and genicus, ma:, by any man, be made to stand for one and the same idea in his own mind, and if he takes cuic to acivertise us of this, he is at liberty to use them promiscuously. But if the common course of language hait confined the word senius to express the sataral strengtin and talents of the mind, and the word ubiliy to denote those which are acquired, whoever pretends to explain the proper acceptation of theselicas, is bound to take notice of this difference.

As propricty of speech makes our language intelligible, and gives our thoughts a ready entrance into the minds of others, it well deserves our application and care. The best way to acquire it is from the writings and discourses of those who secin to have had the clearest notions, and to have applied their terms with the exactest choice and fitness.
Sec. VII.—Dcfinitions of the Thing refir to the real Objects of Nature.
We come now to the third and last species of definition, that namely, which considers words as referred to things themselves. And here it is plain, we are not at liberly to feign and fashion our explications at pleasure, but being tied down to the real objects of nature must study a conformity to things themselves. When we define, for instance, the sull, considered as that being who possesses the centre of our system, and diffuses hdat and light to the planets around him; it is not enough that we give an account of the idea, answering to that word in our minds. We must further take care, that the idea itself carries in it a real conformity to the object it is supposed to represchit. Aud lienceitis, that all definitions of this kind, whon justly made, are in reality pictures or represuatations, taken from the being and existence of things. For they are intended to express their nature and properties so as to distinguish them from all others, and exbibit them clearly to the view of the mind. "Tis for this reason that logicians call them definitions of things, because they are supposed to vefer, mon so much is the ideas in the understanding, as to the things themselves :upescnted by those ideas.

Sec. VIII.-Ground of the distinction between the definition of the Name and of the Thing.
And this also lets us into the ground of that distinction so universally received between definitions of the name and oi the thing. The first are arbitrasf, and not liatbe to debate or contradiction. The second are propositions, capable of proof and illustration, and which may therefore be contested. The reason is obvious. Definitions of the name serve only to inank whet ideas we connect with our words.And as sounds are oi themselves indifferent to signify any ideas, we are entirciy at liberty to affix to them what notions we please. But it is otherwise in the definition of the thing. For here our words serving to chenote particular beings in nature, cannot be the simas of any ideas at pleasure, but of such only as carry in them a conformity to the several objects to which the words refer. A man may use the term, square, to express that idea, which others denote by the word, triangle, and define it accordingly. In this case, indlecd, he recodes from the common forms of specech, but his definition cannot be charged with falsehood. He tells us that by a square he means a three-sided figure ; and who can dispute the truth of this, if he really all along uses the word in that sense? I would only observe, that by changing thus the meaning of words, we change not things themselves, or their relations and habitudes one towards another. These ate at all times the same and invariable, nor have any dependence upon the fancy and caprice of men. It is true, the properties of the triangle may, after this definition, be affirmed of the square; but as in cither case, the idea to which these properties belong, is the same, the propositions only expressing our judgments, and not our judgments themselves, suffer a serming labiaion.

Sec. IX.-A previous connexion between Names and Things, cuts off all Arbitrary Explications.
But where words are made to denote particular ctjects, previous to any definitions given, there arbitrary explications cannot have place. For in this case, we are not put upon caplaining what ideas we connect with our words, but a connexion being alread; supposed between the rame and the thing significe, our business is to unfoid that idea by which the 心ject itself is most clearly and distinctly represcmed. Thus the word gold, denotes that metal which is of highest value among men, and gous tarthest in the way of commerce. This conncxion bein? once settled, we are no longer left to arbitary definitions, but must describe it by such properties as ate really to be found in it, and will best serve to distiuguish it whan it comes in our way; as by saying it is a substance yellow, very heavy, malleable, fusible, \&c.
Scc. X.—Why Mat/irmatical Drfinitions have been accounted mere $D_{\text {f frifiouns of the Nime; }}$
From what has been said, it appears, that in the language of logicians, definitions of the thing respect only substances and beings that have a real existence in nature, serving to descriixe them by deir properties and attributes. And this, I doubt not, is the ra son, that the definitions of the mathematicians are not considered as definitions of the thing, but of the name; because the ideas therein described, are the mere creatures of the understanding, and not siaposed to be copied from patterns existing witheut us. a circle, a triangle, a square, \&c. such as matiomaticians conceive them, are no where to be found in mature, that we know of. Hence it might justly be accosinted absurx, to call our definitions of these, definitions if the thing, when they serve not to describe any
real objects of nature, but merely to unfold the conceptions of the mind. And yet if we look into the matter narrowly, we shall find, that the rules followed in these definitions are precisely the same witin those which logicians have laid down for the definition of the thing. All the several species of figures are described by their properties, some of which are common to different ranks, others peculiar to the tribe defined. The conmon properties constitute what logicians call the genus, and those that are peculiar, the difference Now the genus and differcnce make up the logical definition of the thing, as will be more clearly understood from what follows.
Sec. XI.—When yet they coincide with the logical defnition of the thing, and therefore ought not to be atcounted arbitrary.
I am therefore, apt to think, that mathematical resinitions, as they are of the same general with the definitions of substances, and subject to the same rules, have been improperly considered as mere defiritions of the name, in which we aie left wholly to arl. itrary explications. For however we may change the name of one figure for another in discourse or writing, using the term square to denote a trianyle, \Leftrightarrow the word triangle to express a sgiar, it is certain the ideas thernstives are invariable, and no less capable of being cistinguished by their properties, than the several species of substances. Thus, if we suppose the word square to denote that species of figueis, whose sides sevcrally subtend quadrants of a circumscribed circle, we shail find ourselves equally shut out from ariotrary explications, as in the ciefrition of the names of substances. For as this hempeni in no figures but those which are bounded by four etual sides joinel together at rizat aingos it fliows
eviclently, that the true and proper definition of a square, is that which exhibits the precise idea here mentioned, and no other, to the mind. And thus it appears, that the common division of definitions, into those of the name and tiing, is not sufficiently calculated to give us right apprehensions, as to what is and what is not arbitrary in the explication of words. It may not, therefore, be improper, if we here endeavor to clear up this matter a little, and free it from those obscurities in which it has hitherto been involved. To this end we shall premise the following observations.

Scc. XII.-Definitions, frotherly sheaking, never resard Things, but merely our owun Ideas.

1. First, that whatever Iogicians may pretend about the definition of the thing, it is yet certain, that none of our definitions, when parsued to their source, regard immediately things themselves, but merely the ideas in our own minds. This, I doubt not, will afpear a paradox to many, who wilp be apt to enquire, whether the definition of gold, be not taken from that metal, independent of the various conceptions of men about it. 'To this I answer, that indeed in fruming our idea of gold, we regard chiefly the thing itself, uniting in our conception such properties as are most conspicuous, and serve best to distinguish it from other metals, to which it may bear any resemblance. But as it is by this idea alone that gold is known to us, so in describing it to others, we aim at nothing more than to transfer the same conception into their minds. Now this can no otherwise be done, but by enumerating the several properties of which our own complex notion is formed. And indeed it were in the highest degree absurd to imaginc, that men in explaining things to others, should make use of any
marks or characters but those by which they are known to themselves. Hence it comes to pass, that all our definitions are in fact nothing else but transcripts of the ideas in our minds. Where these are imperfect, the definition: m:st be so too; where they are just and adequate, the copies taken from them, if dirawn out with accuracy and care, cannot fail to exhibit the object described. And this will very well serve to account for that great diversity of definitions we often meet with, even of one and the same object. Because men, in consequence of their Wifterent pursuits and applications, falling often into diexemt vievs of things, must needs vary no less in their cefnitions, than in the ideas themselves from which these definitions are copied. He, whose observation eroes to farther than the more obvious qualitics císul, wii conte:t himself with describing it by its culur, woinht, and perhaps malleability and fusibity. On the oficr hand, a goldsmith, having enquired fentier int, the nature of that metal, and findins scicalal otar propertios that equally belong to it, will be aft to tule these afoo into his complex idea, ad acordingly iatrocuce them tu a dofintion. Hence his eseripton will add to the former, finculaess, and sobuty incura resi, \&ce. And so in proportion as mus wains ? ursuits lead them into a more accurute
 diacicin ina, shitable to the ideas they have framed witutn áberaclies.

$$
\begin{aligned}
& \text { Sw. XIIL- }
\end{aligned}
$$

2. This then being efinent that our definitions reSt inot thingstachano, but ti: ideas in our own mishis; 1 vould in the next piace observe, that tise

is altogether useless, and tends rather to mislead us than give right apprehensions of the subject in hand. For thus men are apt to fancy, that many of theirdefinitions are expressive of the real essence of things, whereas they are in truth no more than transcripis of their own ideas. And as it sometimes falls out, that these ideas are not collected with sufficient care, from the objects they represent; we find, by experience, that a mistaken idea never fails to occasion a mistake also in the definition. But this could not happen, were our definitions copied from things themselves: because their essences being inmutable and always the same, the definition would in this case serve to correct the idea, and might be considered as a standard, by which to judge whether the idea was rightly framed. I deny not, that words are often transferred from our ideas to signify the objects which these ideas represent ; as when we talk of the sun, the calth, men, and other animals. Hut then let it be obscrved, that as these objects are only known to us, by the ideas of them in our minds; so, in describing them to others, :ll we aim at is, distinctly to lay open our concerptions about them. Hence it appears, that what lomid ians call a deffition of the thing, is in truth no more than in unfoldung of the idea, by which that thing is ra presented to the understanding. But now in ta thchasical definitions, and indeed all others win-wouc: this also is: our whole aim and intent, to exini, aud lay open those ideac, of which the words wi- li:e are the sis,us. And thus it happens, that in innumerable instane es, what logicians call the dinition of the name, i. jut found to coincide with and prowed by the very sane rule:, as the dejinition of the thing; whis is ce:tiy demonstrates the necessity of banisine this intu-
 daterminate notion, expersise of the tre ast $\%$ of a derinition, and compronn an it in to full extat.

Sec. XIV.—Dcfinitions in all cases.descriftions of cur Ideas.

Nor will this appear so difficult a task, if we call to mind, that words are in all cases the signs of our ideas, and no otherwise signify things, than as they stand for those ideas by which things are represented to the understanding. By defining our words, therefore, we can mean no more, than the laying open to the view of others, the ideas of which these words are the signs. For thus it is, that the meaning of our expressions comes to be known, and that we find ourselves capable of transferving our thoughts and conceptions into the minds of those with whom we converse. Where words are refered to things themselves, there we explain the ideas• by which these things are represented; where they denote conceptions framed by the mind, there we lay open these conceptions, and endeavour to cxhibit them according to their real appearance within our own breasts. But in both cases, it is our own ideas, it is the percepinas of our own minds, cither as taken from things without, or framed by the understanding itself, that we explicate and unfold.
Sec. XV.-Nb, arbiirary, as being confined to the Renicsentaic, of certain cleterminate Notions.
And thus we have at larth settled the true and genvine notion of a definition, comprehending all its varitics, from whatever science taken, or to whaterer object eseded. For from what we have said, it evilentiy $, \ldots, 5$, that a definition is the unfolding of some comed lim of the mind, answering to the word or cum mase use of as the sign of it. Now, as in evibitior any idea to ancther, it is necessary that tiee description be such as may excite that precise idea in hos mind ; hence it is plain, that definitions,
properly speaking, are not arbitrary, but confined to the representing of certain determinate settled notions, such, namely, as are annexed by the speaker or writer to the words he uses. As, nevertheless, it 1; universally allowed that the signification of words is perfectly voluntary, and not the effect of any natural and necessary connexion between them and the idsas for which they stand, some may perhaps wonder why definitions are not so too. In order, there. fore, to uniavel this difficulty, and show distinctly what is, and what is not arbitrary in speech, we must carefully distinguish between the connexion of our words and ideas, and the unfolding of the ideas themselves.

Sec. XVI.—The Connexion betzocen Words and Idcas, a herfictly voluntary Establishment.
First, as to the connexion of our words and ideas, this, it is plain, is a purely arbitrary institution. When, for instance, we have in our minds, the idea of any particular species of metals, the calling it by the name cold, is an effect of the voluntary choice of men speakin!t the same language, and not of any peculiar aptness in that sound to express that idea. Other nat:onc, we find make use of different sounds, and with the same cllcot. Thus aurt:m denotes that idea in Latin, and or in French. And even the word gold its:lf, would have as well served to express the idea of that met,: which we call silver, had custom in the begimhin: so cotablished it.
Sec. X'II._T\% Descrihtions ci Ideas not so, but boundel to the kifhresentation if that trecise Atficarence by awhiti. they are ustinguished among themse!ves.
But altinugh we are thus enticly at liberty, in

otherwise in unfolding the ideas themselves. For every idea, having a precise appearance of its own, by which it is distinguished from every other idea; it is manifest, that in laying it open to others, we mu,t study such a description, as shall exhibit that peculiar appearance. When we have formed to ourselves the idea of a figure bounded by four egial sides, joined together at right angles, we are at liberty to express that idea by any sound, and may call it either a square or a triangle. But whichever of these names we use, so long as the idea is the same, the description, by which we would signify it to another, must be so loo. • Let it be called square or triangle, it is still a figure having four equal sides, and all its angles right ones. Hence we clearly see, what is, and what is not arbitrary in the use of words. The establishing any sound, as the mark of some determinate idea in the mind, is the effect of free choice, and a voluntary combination among men. And as different nations make use of different sounds, to denote the same ideas, hence proceeds all that variety of languages which we meet with in the world. But when a connexicn between our ideas and words is once settled, the unfolding of the idea answering to any word, which properly constitutes a definition, is by no means an arbitrary thing. For here, as I have already observed, we are bound to exhibit that precise conception, which either the use of language or our own particular choice, hath annexed to the term we use.

Sec. XVIII.-Causes of the Obscurity that has hitherto herflexed the Theory of Definitions.

And thus it appears, that definitions, considered as descriptions of ideas in the mind, are steady and invasiable, being bounded to the representation of those

OF LOGIC.

precise ideas. But then in the application of definitions to particular names, we are alosobint left in our own fiee choice. Because as the connecimer ri any idea with any sound, is a perfectiy abituary ins:tution ; the appiying the description of that icice, to that sound, must be so too. When, therenor, loricians tell us, that the definition of the name is allitrary, they mean no more than tio; that as dificrent ideas may be connected with any term, acroreline to the good pleasure of him that uses it, in like manner may different descriptions be apphied to that term, suitable to the ideas so connocted. But tinis connexion being settled, and the terin conidered as the sirn of some fixed idea in the urdostandiner, we are !o, longer left to arbitrary expiralions, but must shany such a description as conrepponds with hat precise idea. Now this alone, arecrdins to whit has been before laid down, ought to be acceunted a definition. What, I aln apt to think, has occasioned no small confusion in this matter is. that many explanations of words, where mo iciea is anfolded, but merely the connexion between some vord and idea eseerted, have yet been dignified with the name of definitions. Thus, in the instance before given, when we say that a clock is an instrumcu by which we measure time; this is by some called a definition. And yet it is plain, that we aic befrechand supposed to have an idea of this instrument, and only taught that the wond rlock, serves in common language to denote that idea. By this rule all expileationts of words in our dictioniries will be definitions : hay, as was alrcidy observed, the names of even simple ideas may be thus def:ned. Whit, we may say is the colour we observe in snow or mille, heac the sensation produced by a;proaching; the fire, and so in inmumerable other insiances. But these, and all others oi the like kint.
are $\mathrm{b} ;$ no means definitions, exciting new ideas in tise understanding, but merely contrivances to remind us of known ideas, and teach their connexion with the established names. It is, nevertheless, worth our notice, that what logicians call definitions of the name, extend properly no farther than these explapations, serving to mark the connexion of our ideas and words; and are therefore justly accounted arbitrary, inasmuch as the connexions themselves are altogethcr so.

Sec. XIX.-Complex idcas alone cathable of that kind of descriftition wilich goes by the name of a definition.
But now in definitions properly so called, we first consider the term we use, as the sign of some inward conception, either annexed to it by custom, or our own free choice; and then the business of the definition is to unfold and explicate that idea. As therefore the whole art lies, in giving just and true copies of our ideas; a definition is then said to be perfect, when it serves distinctly to excite the idea described in the mind of another, even supposing him before wholly unacquainted with it. This point settled, let us next enquire into what those ideas are which are capable of being thus unfolded. And in the first place, it is crideit, that all our simple-ideas are necessarily excluded. We have seen already, that experience alone is to be consulted here, insomuch, that if either the obieste, whence they are derived, come not in our way, or the avenues appointed by nature for their reception are wanting, no description is sufficient to convey them into the mind. But where the understanding is alrady supplied with these original and primitive conceptions, as they may be united together in an infinity of diferent forms; so may all their several combinaanims be distinctly laid open by enumerating the sim-
ple ideas concerned in the various collections, and' tracing the order and manner in which they are linked one to another. Now these combinations of simple notices constitute what we call our complex notions ; whence it is evident that complex ideas, and those alone, admit of that kind of description, which goes by the name of a definition.

Sec. XX.-When a complex idea may be said to be fuili. unfolded.
The business of definitions is now, I think, pretty plain. They are, as we have seen, pictures or reperesentations of our ideas; and as these representations are then only possible, when the ideas themselves are complex ; it is obvious to remark, that definitions cannot have place, but where we make use of terms, standing for such complex ideas. But perhaps the reader may still expect, that we should enter a little more particularly into the nature of a definition, describe its parts, and show by what rules it ought to proceed, in order to the attainment of its proper end. To give, therefore, what satisfaction we are able upon this point, we must again call to mind, that the design of a definition is, so to unfold the idea answering to any term, as that it may be clearly and distinctly transferred into the mind of another. But now our complex ideas, which alone are capable of this kind of description, being, as we have said, nothing more than different combinations of simple ideas; we then know and comprehend them perfectly, when we know the several simple ideas of which they consist, and can so put them together in our minds, as is nece ssary towards the framing of that peculiar connexion, which gives every idea its distinct and proper appearance.

Sec. XXI.-Two things required in a definition: toenumerate the ideas, and explain the manner of their combination.
T wo thirgs ape therefore required in every definition. First, that all the original ideas, cut of which the complex one is formed, be distinctly enumerated. Gecodly, tiat the order and manner of combining them into one conception, be clearly explained.Where a difmition has these requisites, nothing is Wuting to its perfection ; because every one who Uads it, and understands the terms, seeing at once what ideas he is to join togetner, and also in what ;hanier, can at pleasure form in his own mind the complex conception answering to the term defined. i.cl us, for insiunce, suppose the word, square, to stand ior that idea, by which we represent to ourselves a It ;iiie, whose sides subtend quadrants of a circumsc: ibed circle. The parts of this idea, are the sides ionading the figure. These must be four in numbit, and all equal among themselves, because they ate each to sutitend a fourth part of the same circle. lat besides tiese component parts, ree must also take rotice of the manaer of putting them together, if we sicuid exinnt the precise idea, for which the word sure howe stads. Ion four equal right lines, any low juised, wat not subud cuadrants of a circumwaibud come. A figure with this pocpery, must lave its sides stading also at right angles. Tountr in, thectre, tins last consideration, respecting the monar or corminimg the parts, the idea is fuly desoribed, and the duntion thereby rendered complut. isi a thas, bonad by fow equal sides, joined to-
 and is, monow, the ouj right-lined figure to whed t.at propuredung.

> Sec. XXII.-How we are to hroceed, to arrive at just and adequate definitions.

And nuw, I imagine, it will be obvious to every one in what manner we ought to proceed, in order to arrive at just and adequate definitions. First, we are to take an exact view of the idea to be described, trace it to its original principles, and mark the several simple perceptions that enter into the composition of it. Secondly, we are to consider the particular manner in which these elementary ideas are combined, in order to the forming of that precise conception, for which the term we make use of stands. When this is done, and the idea wholly unravelled, we have nothing more to do; than fairly transcribe the appearance it makes to our own minds. Such a description, by distinctly exhibiting the order and number of our primitive conceptions, cannot fail to excite, at the same time, in the mind of every one that reads it, the complex idea resulting from them; and therefore attains the true and proper end of a definition.

CIIAP. VII.

OF THE COMPOSITIO: AND RESOLUTION OF OUR IDEAS, AND THE RULES OF DEFINITION THENCr: ARISING.

Sec. I.-In comflaunding our Ideas, we froceed by suc. crasiz' gradation.

THE rule laid down in the foreroing chapter is general, extending to all possible cases; and is, indeed, that to which alone We can have recontie, where any doubt or difficulty wi.e:s. It is in, however, nce:ssary, that we should practice it in evory particutar instance. Muny of our ideas uice extremely clanjii-
cated; insomuch that to enumerate all the simple perceptions out of which they are formed, would be a very troublesome and tedious work. For this reason, logicians have established certain compendious: rules of defining, of which it may not be amiss here to give some account. But in order to the better understanding of what follows, it will be necessary to observe, that there is a certain gradation in the composition of our ideas. The mind of man is very limited in its views, and cannot take in a great number of objects at once. We are, therefore, fain to proceed by steps, and make our first advances subservient to those which follow. Thus in forming our complex notions, we begin at first with but a few simple ideas, such as we can manage with ease, and unite them together into one conception. When we are provided with a sufficient stock of these, and have, by habit and use, rendered them familiar to our minds, they become the component parts of other ideas, still more complicated, and form what we may call a second order of compound notions. This process, as is evident, may be continued to any degree of composition we please, mounting from one stage to another, and enlarging the number of combinations.
Sec. II.-Hence ideas of this class best comprehended, zwhen we advance gradually through all the several orders.

But now in a series of this kind, whoever would acquaint himself perfectly with the last and highest order of ideas, finds it much the most expeditious method, to proceed gradually through all the intermediate steps. For was he to take any very compounded idea to pieces, and without regard to the several classes of simple perceptions, that have already been formed into distinct combinations, break
in at once into its original principles, the number would be so great, as perfectly to confound the imagination, and overcome the utmost reach and capacity of the mind. When we see a prodigious multitude of men, jumbled tagether in crowds, without order, or any regular position, we find it impossible to arrive at an exact knowledge of their number. But if they are formed into separate battalions, and so stationed as to fall within the leisurely survey of the eye; by viewing them successively, and in order, we come to an easy and certain determination. It is the same in our complex ideas. When the original perceptions, out of which they are framed, are very numerous, it is not enough that we take a view of them in loose and scattered bodies. We must form them into distinct classes, and unite these classes in a just and orderly manner, before we can arrive at a true knowledge of the compound notices resulting from tirem.
Sec. III.—Our. Definitions ought to kech pace with our Ideas, and observe a like gradation.
This gradual progress of the mind to its compound notions, through a variety of intermediate steps, plainly points out the manner of conducting the definitions by which these notions are conveyed into the minds of others. For as the series begins with simple and etity combinations, and advances through a succession of different orders, rising one alove arother in the degree of composition ; it is evicient, that in a train of definitions cepressing these ideas, a like gradation is to be observed. Thus the complex ideas of the lowest onder, ean no otherwise be described, than by enumerating the simple ideas out of which they are made, and ceplaining the manner of their union. Bit then in the second, or any succeeding order, as
they are formed out of those gradual combinations. 4hat constitute the inferior classes, it is not necessary in describing them, to mention one by one, all the simple ideas of which they consist. They may be more distinctly and bricfly unfolded, by enumerating the compound ideas of a lowar order from whose union they result, and which are all supposed to be already known, in consequence of previous definitions. Here then it is, that the logical method of defining takes place; which, that we may the better understand, I shall explain somewhat more particularly, the several steps and gradations of the mind, in compounding its ideas, and thence deduce that peculiar form of a definition, which logicians have thought fit to establish.
Sec. IV.—The stets by which the Mind froceeds from Particulur to General Ileas.
All the ideas we receive, from the several objects of nature that surround us, represent distinct individuals. These individuals, when compared together, are found in certain particulars to resemble. Hence, hy collecting the resembling particulars into one conception, we form the notion of a sluccies. And here let it be observed, that this last idea is less complicated than that by which we represent any of the particular objects contained under it. For the idea of the species excludes the peculiarities of the several individuals, and retains only such properties as are common to them all. Again, by comparing several species together, and observing their resemblance, we form the idea of the genus; where, in the same manner as before, the composition is lessened, because we leave out what is peculia: to the several species compared, and retain only tie particulars wherein they agree. It is easy to conceive the mind, preceed-
ing thus from one step to another, and advancirys through its several classes of general notions, until at last it comes to the highest genus of all, denoted iy the word being, where the bare idea of existence is only concerned.
Sec. V.-The conduct of the Mind in comflounding its Ideas, as it advances through the different orders of nerccition.
In this procedure, we see the mind unravelling a complex idea, and tracing it in the ascending scale, from greater to less degrees of composition, until it terminates in one simple perception. If now we take the series the contrary way, and beginning with the last or highest genus, carry our view downwayds, through all the inferior genera and species, quite to the individuals; we shall thereby arrive at a distinct apprehension of the conduct of the understanding in compounding its ideas. lion in the several classes of our perceptions, the highest in the scale is, for the most part, made up of but a fiow simple ideas, such as the mind can take in and survey with ease. This first general notion, when branched out into the different suldivisions contained under it, has in every one of them something peculiar, by which they are distinguished among themselves; insomuch that in descending from the genus to the species, we always superadd some new idea, and thereby increase the degree of composition. Thus the idea denoted by the word fisure, is of a wery general nature, and composed of but few simple perceptions, as implying no more than space eecry where bounded. But if ve descend farther, and consider the boundaries of this space, as, that they may be cither lines or sumaces, we fall into the several species of figure. For where the space is bounded by one or more suffaces, we
give it the name of a solid figure; but where the boundarics are lines, it is called a plain fisure.
Sec. VI.—The Idea of the Shecies formed by sukeradding the shecijic Difference to the Genus.
In this view of things, it is evident, that the spiecies are formed by superadding a new idea to the genus. Mere, for instance, the genus is circumscribed space. If now to this we superadd the idea of a circumscription by line, we frame the notion of that species of figures which are called flain; but if we conceive the circumscription to be by surfaces, we have the spories of solid figures. Thio superadded idea is callcil the shecific difference, not only as it serves to divide the spucies from the genus, but because, being cliferent in all the several subdivisions, we thereby also distinguish the shecies one from another. And as it is likewise that conception, which, by being joined to the general idea, completes the netion of the sfecies; leince it plain, that the genus and shecific clifference are to be considered as the proper and constituent parts of the species. If ree trace the.progress of the mind still farther, and observe it advancing through the inferior specics, we shall find its manner of proceeding; to be always the same. For every lower species is formed by superadding some new idea to the species next above it ; insomuch, that in descending the scale of our perceptions, the understanding passes through different orders of complex notions, which become more and more complicated at every siep it takes. Let us resume here, for instance, the species of plain figures. They imply no more than space bounded by lines. But if we take in an additional considerition of the nature of these lines, as, whether they are right or curves, we fall into tae subdivisions of plain figure, distinguished by the Hames rationar, curvilinear and mixtilinear.

Sec. VII.—And in all the inferior stiecies by sutheradding the ehocific to the nearest genus.
And here we are to observe, that though plain figures, when considered as one of those branches that come under the notion of figure in general, take the name of a species; yet compared with the classes of curvilinear, rectilinear, and mixtilinear, into which they themselves may be divided, they really become a genus, of which the before mentioned subdivisions constitute the several species. These species, in the stume manner as in the case of plain and solid figures, consist of the genus and specific difference, as theiconstituent parts. For in the curvilincar kind, the curvity of the lines bounding the figure, makes what is called the splecific differcnce; to which if we join the genus, which here is plain figure, or space circumscribed by lines, we have all that is necessary towards completing the notion of the species. We are only to take notice, that this last subdivision, having two gencra above it, riz. plain fífuro, and figure in general; the genms, joinet with the specific differcime, in order to constitute the specins of curvilincar, is that which lies nearest to the said species. It is the notion of flain jigure, and not of fies:rc in general, that, jsined with the idea of curvity, makes up the complex conception of curvecl-lined s.rures. For in this desecnding scate of our ideas-Fiyure in general, plaiz fifurs, curve-lized fisures-the two first are considered as genera in respect to the third; and the second in order, or that which stands next to the thinl, is called the mearest genus. But now as it is this second inca, which, joined with the notion of curvity, forms the species of curve-lined figures; it is plain, that tie third or last idea in the series, is made up of tic nearest genus and anecific differcici. This rule
holds invariably, however far the series is continued; because in a train of ideas thus succeeding one another, all that precede the last are considered as so many genera, in respect of that last; and the last itself is always formed, by superadding the specific difference to the genus next it.

Sec. VIII.—The idec of an individual composed of the lozoest splecies and numeric diffirence.

Here then we have an universal description, applicable to all our ideas, of whatever kind, from the highes: genus, to the lowest species. For taking them in order downwards from the said general idea, they cvery where consist of the genus iroximum, and diffirentia shccifica, as logicians love to express themselves. But when we come to the lowest species of all, comprehending in it only individuals, the superadded idea, by which these individuals are distinguished one from another, no longer takes the name of the specific differenc. For here it serves int to denote distinct species, but mereiy a variety of individuals, cach of whech, having a paricular existence of its ow, i, is therefore ammericolly ciaferent from every othor the same bind. Aollumee it is, that in this jast case tosivia.s, choose to call the superaddedidea liy the lidnt of the numerical difirenci; insomuch that as the iden of a species, is made up of the recar-
 divilual consts of the treest sfiecios and numeric diffirence. Truis the circle is a species of curve-lined tigeme, and wout we call the bicost sfecion, as comprehemdin? under it only iudiviuals. Circles in paticular are dotahed from one another by the lencth and position of in dizmeters. The leneth, therefore, and pesisu of the dianter oif a cacio, is what logicinns cail the numerical cifforence; because-
these being given, the circle itself may be described, and an individual thereby constituted.
Sec. IX.-Definitions to follow one another in train, and fuss through the same successive gradations us our com/tound ideas.
And thus we have endeavored to trace, in the best manner we are able, the progress of the mind in compounding its ideas. It begins, we see, with the most gucrai notions, which, consisting of but a few. simple notices, are easily combined and brought together into one conception. Thence it proceeds to the species comprehended under this general idea, and l :ese are formed by joining together the genus and sitecific difference. And as it often happens, that the es species may be still further subdivided, and run on in a long xaries of continued gradations, jroxincing. various orders of compound perceptions; 60 all these scural orders are regularly and successively fomed, by mnexin!; in every step, the shecific uifiir. ne to the nearest genus. Whea by this method of pocedure, we are conace to the lowest order of all ; by jopno the sicios and numeric difrone, we frame t: $:$ inatis of incividuals. Nind here the series necessumily continates, becanse it is impossible any farther whan or indit our conceptions. This view of the

 point ; out tia true and genuinc form of a definition. !es aticutishs ais no more than the descriptions of t!:e ideas fer which the terms defind stand; and a bilats a then lescribed, when we enumerate disditaly and in ordor, the parts of which they consist;

 bice wita the thus the: describ:

Sec. X.-The form of a Definition in all the various orders of Conceftion.

As therefore the first order of our compound notions, or the ideas that constitute the highest genera, in the different scales of perception, are formed, by uniting together a certain number of simple notices; sir ti:e terms expressing these genera, are defined by ratiasrating the simple notices so combined. And as the species comprehended under any genus, or the complex ideas of the second order, arise from superadding the specific difference to the said general idea; -s. the definition or the names of the species is absolved, in a diwtil of the idens of the shecijic difference, connected with the wrm of the genus. I or the genus having been bcfore defined, the term by which it is expresied stands for a known idea, and may therefore Le intiociuced m:o afl subsequent definitions, in the \therefore int manner as the names of simple perceptions. It $\because A n . \tau$, I think, be sufficiently obvious, that the cieThate of ait the succeeding orders of compound nohi. ins, w.] cvery where consist of the term of the nearest ::- Mo.s joined with on enumeroion of the ideas that consiatm, itr sifecific diference; and that the definition ‥ indinu.uals unites the name of the lowest stecies, with rite trais in which we express the ideas of the numeric difference.

Sec. XI.—The logical method of defining herfect in its kind;

Here then we have the true and proper form of a definition, in all the various orders of conception. This is that method of defining, which is commonly cailed losical, and which, we see, is perfect in its kind, inasmuch as it presents a full and adequate description of the idca, for which the term defined stands. There are still two things worthy of observation, be-
fore we take leave of this subject. First, that the very frame and contexture of these definitions, points out the order in which thcy ought to follow one another. lor as the name of the genus is admitted into a description, only in consequence of its having been before defined ; it is evident, that we must pass gradually through all the different orders of conception. Accordingly, logicians lay it down as a rule, that we are to begin always with the highest genus, and carry on the series of definitions regularly, through all the intermediate genera and species, quite down to the individuals. By this means our descriptions keep pace with our ideas, and pass through the same successive gradations; insomuch, that the perusal of them must excite those ideas in the understanding of another, in the very order and manner in which they are put together by the mind in its uniform advances from simple to the most complicated notions. Now this is the true and proper cad of defining, and indeed the lirgicst perfection of that art.
Sec. XII.-Amiathlicable to all worl's vohatsocver cafable of a definition.
There is yet another thing to be observed on this hearl, namily, that the form here prescribed, is applicable to all woris whatosever, capable of a definition. For as cury term we use, must denote some idea, cither general or particular; and as all our complex notions relating to both these classes of perception from the highest genus quite down to the individuals, come within the ruk: of description here given; it is evident, that this particular mamer of unfording an idea, may be extended to all the possible complex conceptions we can comert with our woids. By the ruics therefore of this, method, definitions may be applied 1 , all terms standing for compiex idous; and
as these, by what we have shown at large in the two foregoing chapters, are the only definable articles of speech; it necessarily follows, that the directions here given are universal, extend to all particular instances, and are alike applicable in all languages.And thus at length, we have not only deduced that peculiar form of a definition which obtains among logricians, but shown it also to be perfect in its kind and to take in the whole compass of language.

- BOOK II.

OF JUDGMENT, OR INTUITION.

CHAP. I.

OF THE GFGU゙NDS OF HUNIAN JUDGMENT.

Sec. I.-Intuition restrects the relation between our Ideas when they are immediatcly herceivable.

When the mind is furnished with ideas, its next step in the way to knowledge is, the comparing these ideas together, in order to judge of their agreement or disagreement. In this joint view of our ideas, if the relation is such, as to be immediately discoverable by the bare inspection of the mind; the judgments thence obtained are called intuitive, from a word that denotes to look at: for in this case, a mere attention to the ideas compared, suffices to let us see, how far they are connected or disjoined. Thus, that the whole is greater than any of its parts, is an intuitive judgment, nothing more being required, to con-
vince us of its truth, than an attention to the ideas of whole and part. And this, too, is the rcason, why we call the act of the mind forming these judgments intuition; as it is indeed no more than an immediate perception of the agreement or disagreement of any two ideas.

Sec. II.-Experience and Testimony the Ground of judging as to Facts.

But here it is to be observed, that our knowledge of this kind, respects only our ideas, and the relations between them, and therefore can serve only as a foundation to such reasonings, as are employed in investigating these relations. Now it so happens, that many of our judgments are conversant about facts, and the real existence of things which cannot be traced by the bare contemplation of our ideas. It docs not follow, lecause I have the idea of a circle in my mind, that therefore a figure auswering to that isca, has a real ceistence in nature. I can form to myself the notion of a centaur, or golden mountaiz, but never imagine on that account, that either of them exists. What then are the grounds of our judgraents, in relation to facts? I answer, these two: cxplerience and testimony. By exiacrience we are informed of the existence of the several objects which surround us, and operate upon our senses. Testimony is of a wider extent, and reaches not only' to objects beyond the present sphere of our observation, but also to facts and transactions, which, being now past, and having no longer any existence, could not, without this conveyance, have fallen under our cosnizance. Scc. III - T'Iree Foundations of human Judgment, vi:-.

1. Intuition, the Ground of scicntifical knowledge;

Here then we have three foundations of human judgment, from which the whote system of our know!-
edge may with ease and advantage be deduced. First, intuition, which respects our ideas themselves, and their relations, and is the foundation of that species of reasoning which we call demonstration. For whatever is deduced from our intutive perceptions, by a clear and connected series of proofs, is said to be demonstrated, and produces absolute certainty in the mind. Hence the knowledge obtained in this manner, is what we properly term science; because, in every step of the procedure, it carries its own evidence along with it, and leaves no room for doubt or hesitation. And what is highly worthy of notice ; as the truths of this class express the relations between our ideas, and the same relations must cever and invariably subsiset between the same ideas, our deductions, in the way of science, constitute what we call eternal, necessary, and immutable truths. If it be true, that the whole is equal to all its parts, it must be so unchangeably ; because the relations of equality being attached to the ideas themselves, must ever intervene where the same ideas are compared. Of this nature are all the truths of natural religion, morality, and mathematics; and in general whatever may be gathered from the bare view and consideration of our ideas.
Sec. IV.-2. Exficrience the Ground of our Knowledge of the Pozvers and Qualities of Bodies.
The second ground of human judgment is experience; from which we infer the existence of those objects that surround us, and fall under the immediate notice of our senses. When we see the sun, or cast our eyes towards a building, we not only have ideas of these objects within ourselves, but ascribe to them a real existence out of the mind. It is also 10 the iaformation of the senses, that we judge of
the qualities of bodies; as when we say that snow is white, fire hot, or, steel hard. For as we are wholly unacquainted with the internal structure and constitution of the bodies that produce these sensations in us, nay, and are unable to trace any connexion between that structure and the sensations themseives, it is evident that we build our judgments altogether upon observation, ascribing to bodies such quelitics as are answerable to the perceptions they excite in us. But this is not the only advantage derived from experience, for to that, too, are we indebted for all our knowledge regarding the co-existence of sensible qualities in objects, and the operations of bodies one upon another. Ivory, for instance, is leard and elastic ; this we know by experience, and indeed by that alone. For being altogether strangers to the true nature both of clasticity and hardness, we cannot, by the bare contemplation of our ideas, determitue how far the one necessarily implies the other, or whether there may not be a repugnance between them. But when we observe them to exist both in the same object, we are then assured from ceppericiace that they are not incompatible; and when we also find, that a stone is hard and not elastic-and that ait, though chasic, is not hard-we also conclude, upon the same foundation, that the ideas are not necessarily conjcincul, but may exist separately in different objects. In like mamer, with regurl to the operations of bodies, one tiph another, it is evident, that our knowledge this way is all derived from observation. .Iqua regia tiissolses gold, as has been found by frequent trial; nor is; there any other way of arriving at the discovery. Naturalists may tell us, if they please, that the parts of agua regia are of a texture apt to insinuate between the corpuscles of gold, and thereby loosen and shake them asunder. If this is a true account of
the matter, I believe it will, notwithstanding, be allowed, that our conjecture, in regard to the conformation of these bodies, is deduced from the experiment, and not the experiment from the conjecture. It was not from any previous knowledge of the intimate structure of aqua regia and gold, and the aptness of their parts to act or be acted upon, that we came by the conclusion above mentioned. The internal constitution of bodies is in a manner wholiy unknown to us : and could we even surmount this difficulty, yet as the separation of the parts of gold implies something like an active force in the menstruum, and we ane unable to conceive how it comes to be possessed of this activity ; the effect must be owned to be altowether bevoad our comprchension. Bat when rep ated trinls had once confirmed it, insomuch that it was admitted as an established truth in natural knowlc's, it was then easy for men to spin out theories of Aus own imention, and contrive such a structure of paits both for gold and aqua regia, as woukd best seree to explain the phenomenon, upon the principles of that system of phicosophy they had adopted. I might cabiy show from inmanerble other instances, how much our hasondse of the mutual action of bodies d perds uron uldervation. The bite of a viper will Lith. Pints are some salutary, others roxions. Fire abires one body, and hardens another. These are truths sememiny nown ; wer is it leso evedent that we owe ther disedny wholiy to experience.
 to Ciume.

[^0]have taken their rise from chance, and instead of coming out of the schools of philosophers are for the most ascribed to men of no figure in the commonwealth of learning. Sowing, planting, the use of compass, and such like, are not deductions of human reasen, but discoveries which owe their birth to observation and trial. No wonder, therefore, if these inventions derived their beginning from such, as, being engaged in the active and busy scenes of life, were more in the way of those experiments which lead to discoveries of this nature. And here, as the particular callings and professions of men, and ofttimes chance, has a great ascendant, it need not seem stranse, if some of the most useful arts in society appear to have had an original purely casual.
Scr. VI-Nitworl Knowledge, from the Grounds on which it resis, aftly termed e.therimental Philosothy.
I'rom what has been said, it is evident, that as in tuition is the foundation of what we call scicntifical buow ledge, so is expericnec of nutural. For this last. beins wholly taken up with the objects of sense, or thooe buties the constitute the natural worth-and their premetics, as far as we can discover them, beis en to be axcel only by a long and painful series of simerations; it is aprent, that in order to improve this branch of knerin iope, we must betake ourselves to the method of triti and experiment. Acomdingly, we find, that white this wai nepleted, little advance vas made in the philesophy of nature: whereas a contury procecting has enriched the present ase with many valabic dixoveries; insomuch that minu:a hambedece, in allesion to the fomdation on which it stands, has been very aptly called experinox!a! the:durghy

Sec. VII.-Though much of our Knowledge of Bodig depends on Testimony, yet Exherience is the ullinate Foundation of it.
But though experience is what we may term the immediate foundation of natural knowledge, yet with respect to particular persons, its influence is very narrow and confined. The bodies that surround us are numerous; many of them lie at a great distance; and some quite beyond our reach. Liie too is short, and so crowded with cares, that but little time is left for any single man to employ himself in unfolding the mysteries of nature. Hence it is necessary to admit many things upon the testimony of others, which, by this means, becomes the foundation of a great part of our knowledge of body. No man doubts of the power of acqua regia to dissolve gold, though perhaps he never himself made the experiment. In these, therefore, and such like cases, we judge of the facts, and operations of nature, upon the mere ground of testimony. However, as we can always have recourse to experience, where any doubt or scruple arises, this is justly considered as the true foundation of natural philosophy, being indeed the ultimate sup-port ufon which our assent rests, and whereto we appeal, when the highest degree of evidence is required.
Sec. VIII.-3. Testimony the Ground of Iistorical Kiozalidge.
But there are many facts that will not ailow of an appeal to the senses, and in this case testimony is the true and only foundation of our juigments. All human actions, of whatever kind, when considered as already past, are of the nature here described; because having now no longer any existence, both the
facts themselves, and the circumstances attending them, can be known only from the relations of such as had sufficient opportunities of arriving at the truth. Testimony, therefore, is justly accounted a third ground of human judgment: and as from the other two we have deduced scientifical and natural knowledge, so may we from this derive historical; by which I would be understood to mean, not merely a knowledge of the civil transactions of states and kingdoms, but of all facts whatsoever, where testimony is the ultimate foundation of our belief.
Sec. IX.-The second Oheration of the Mind, commonly extended beyond Intuition.
Before I conclude this chapter, it will be necessary to observe, that though the second operation of the mind, properly speaking, extends not beyond intuitive perceptions, yet logicians have not confined themselves to so strict a view of it ; but calling it by the name jadgment, thercby denote all acts of the mind, where only two ideas are compared, without the immediate interposition of a third. For when the mind joins or separates two ir'eas, though periaps this is donc in cons:culusice of a train of previous reasoning, yot if the understandin: proceeds upon established ionio:s, without attention to that train of reasoning, its determinations are still considered as acts of judgrment. This, That God created the universe, that men are accountable for their actions, are frequently mentioned by loricians, as instances of the mind judging. And yet it is apparent, that these judgments are by no micus of the kind we call intuitive; nay, that it requiren moch exercise of the reasoning faculty, beforc a man com trace their connesion with the perceptions of that name. I could in the same man:er easity show, hat cren our judgments of ex-
perience and testimony, when pursued to their source, derive all their power of persuasion, from being linked with intuitive truths. But I shall wave this enquiry for the present, as being of a nature too subtile for a work of this kind. The remark itself, howerer, was needful, as well to illustrate the proper distinction between the powers of the understanding, as to explain the reason, why in this part of logic, we extend the second operation of the mind beyond those limits, that in strictness of speech belong to it. Let us now proceed to consider a little more particularly the nature and variety of these our judgments.

CHAP. II.

OF AFFIRMATIVEAND NEGATIVE PROPOSITIONS.

Sec. I.-The subject and predicate of a Prohosition explained.

\mathbf{W}merely as an act of the mind, assembling them tosether, and joining or disjoining them according to the result of its perceptions, we call it judgment ; but when our judgments are put into words, they then bear the name of frohositions. A proposition, therefore, is a sentence expressing some judgment of the mind, whereby two or more ideas are affirmed to agree or disagree. Now, as our judgments include at least two ideas, one of which is affirmed or denied of the other, so must a proposition have terms answering to these ideas. The idea, of which we affirm or deny, and of course the term expressing that
idea, is called the subject of the proposition. The idea affirmed or denied, as also the term answering it, is called the fredicate. Thus in the proposition, GOD is omnitotent : GOD is the subject, it being of him that we affirm omnipotence ; and omnitotence is the predicate, because we affirm the idea, expressed by that word to belong to God.

Sec. II.-The Cofuula, Erc.
But as in propositions, ideas are either joined or disjoined; it is not enough to have terms expressing those ideas, unless we have also some words to denote their agreement or disagreement. That word in a proposition, which connects two ideas together, is called the cofula ; and if a negative particle be annexed, we thereby understand, that the ideas are disjoined. The substantive verb is commonly made use of fir the copula, as in the above-mentioned proposition, God is omnificient; where it represents the copula, and signifies the agreement of the ideas Giod and omnitotence. But if we mean to separate two ideas, then, besides the substantive verb, we must also use some particle of negation, to express this repugnance. The proposition, man is not perfect, may serve as an example of this kind, where the notion of fuerfection being removed from the idea of man, the negative particle, $n \omega$, is inserted after the copula, to signify the disagreement between the subject and predicate.
Sec. III.—Propositions sometimes exfiressed by a single surs!!.
Every proposition necessarily consists of these three parts; but then it is not alike needful, that they be all scverally expressed in words; because the copula is often included in the term of the predicate ; as when we say, he sits; which imports the
same as he is sitting. In the Latin language, a single word has often the force of a whole sentence. Thus ambulat is the same, as ille est ambulans; amo, as ego sum amans; and so in innumerable other instances; by which it appears, that we are not so much to regard the number of words in a sentence, as the ideas they represent, and the manner in which they are put together. For whenever two ideas are joined or dis. inced in an expression, though of but a single wool, it is evident, that we have a subject, predicate, und copula, and of consequence a complete prope-- ition.

Ser. IV.- Ifimative and Nigative Profositions.
When the mind joins two ideas, we call it an affromative judgment; when it separates them a negwice; and as any two ideas compared together, must necessarily either agree or noi agree, it is evident, that all cur judgments fall under these two divisons. Leme, hkewse, the proposition expressing these judgnemts, are all either ainimative or negatice. An athantio proposition comects the predicit: with the suiject, us, a stone is heury: a negatie proposition ssparates them, as, (j)! is not the aur tiorfevil. Affirmation, therefore, is the same as joining two ideas together ; and this is done by means of the copula. \therefore isation, on the contrary, marks a repugnance between the ideas compared; in which cuse a nersutive paricle must be-".iled in, to show that the cumexion inciuded in the copula does not tade place.
sce. V.—imin tile negatise iaricle serves to disjoin ci心us.
And heare we see the rewor of the ruie commonly hid down by demens, thet in all nesthe prope-
sitions, the negation ought to affect the copula. For as the copula, when placed by itself, between the subject and the predicate, manifestly binds them together ; it is evident, that in order to render a proposition negative, the particle of negation must enter it in such manner, as to destroy this union. In a word, then only are two ideas disjoined in a proposition, when the negative particle may be so referred to the copula, as to break the affirmation included in it, and undo that connexion it would otherwise establish. When we say, for instance, io man is fierfict ; take away the nerration, and the copula of itself plainly unites the ideas in the proposition. But as this is the very reverse of what is intended, a negative mark is added, to show that this union does not here take place. The negation, therefore, by destroying the effect of the copula, changes the very nature of the proposition, insomuch that instead of binding two iknus treethei, it denotes their separation. On the crintray, in this sentence, the man who defiarts not from an theright ithuaior, is beloved of Godl ; the predicale, beloved of (iot, is evidently affirmed of the sulbiect, an ufiright man ; so that notwithstanding the nerative particle, the proposition is still affirmative. The reason is plain ; the negation here affects not the copula, but making property a part of the subject, serves, with wher terms in the sentence, to form one complex idea, of which the im dicate, beloved of God, is directly affirmed. Ihis, peribje:, to some may appear a mere logical refinement, contrived to justify the scholastic rule for distinguishing between affirmative and nersative propositions. But if it be considered, that this distinction is of great importance in reasoning, and rinnort in many cases be made with certainty, but by nibans of this criterion here given, the reader will see sufficient reason for my taking so much pains to illustrate it.

> Sec. VI.-Howv a Cotula comes to be a hart of a nega, tive jurohosition.

Perhaps it may still appear a mystery, how a copula can be said to be a part of a negative proposition, whose proper business it is to disjoin ideas. This difficulty, however, will vanish, if we call to mind, that every judgment implies a direct affirmation, and that this affirmation alone makes the true copula in a proposition. But as our affirmations are of two kinds, viz. either of agreement or of disagreement, between the ideas compared; hence there is also a twofold expression of our judgments. In the case of agreement, the copula aione suffices; because it is the proper mark whereby we denote an identity or conjunction of ideas. But where perceptions disagree, there we must call in a negative particle : and this gives us to understand that the affirmation implied in the copula, is not of any connexion between the subject and predicate, but of their mutual opposition and repugnance.

CHAP. III.

OF UNIVERSAL AND PARTICULAR PROPOSITIONS. Sec. I.—Division of Propositions into Universal and
Particular.

The next considerable division of propositions, is into universal and farticular. Our ideas, according to what has been already observed in the first part, are all singular, as they enter the mind, and represent individual objects. But as by abstraction we can render them universal, so as to comprehend a whole class of things, and sometimes several classes at once; Le:ace the terms expressing these ideas must be in
like manner universal. If, therefore, we suppose any general term to become the subject of a proposition, it is evident, that whatever is affirmed of the abstract idea belonging to that term, may be affirmed of all the individuals to which that idea extends. Thus when we say, men are mortal; we consider mortality, not as confined to one or any number of particular men, but as what may be affirmed without restriction of the whole species. By this means, the proposition becomes as general as the idea which makes the subject of it, and indeed derives its universality entirely from that idea, being more or less so, according as this may be extended to more or fewer individuals. But it is further to be observed of these general terms, that they sometimes enter aproposition in their full latitude, as in the example given above ; and sometimes appear with a mark of limitation. In this last case, we.are given to understand, that the predicate agrees not to the whole universal idea, but only to a part of it ; as in the proposition, some men are wise : for here wisdom is not affirmed of every particular man, but restrained to a few of the human species.
Sec. II.—Protositions universal quhere the subject is so, without a mark of restriction.
Now from this different appearance of the general idea, that constitutes the subject of any judgment, arises the division of propositions into universal and fiurticular. An universal proposition is that, wherein the subject is some general term, taken in its full latitude, insomuch that the predicate agrees to all the individuals comprehended under it, if it denotes a proper species; and to all the several species and their individuals, if it marks an idea of a higher order. The words, all, every, no, none, \&c. are the proper signs of this universality; and as they seldom
fail to accompany general truths, so they are the most obvious criterion whereby to distinguish them. All animals have a hozver of beginning motion. This is an universal proposition; as we know from the word all, prefixed to the subject animal, which denotes that it must be taken in its full extent. Hence the power of beginning motion may be affirmed of all the several species of animals; as of birds, quadrupeds, insects, fishes, \&c. and of all the individuals of which these different classes consist, as of this hawk, that horse, and so for others.
Sec. III.-Prohositions particular a:hore some uriversal Subjects ahnear with: a Mark of Limitation.
A harticular proposition has in like manner some general term for its subject, but with a nark of limitation added, to denote, that the predicate agrees only to some of the individuals comprehended under a species, or to one or more of the species belonging to any genus, and not to the whole universal idea.Thus, some stones are heavier than iron; some men have an uncommon share of pirudence. In the last of these propositions, the subject, some men, implies onIy a certain number of individuals, comprehended under a single species. In the former, where the subject is a genus, that extends to a great variety of distinct classes, some stones may not only imply any number of particular stores, but also several whole species of stoncs; inasmuch as there may be not a few, with the property there described. Hence we see, that a proposition does not cease to be particl:lar, by the predicate's agreeing to a whole species, unless that species, singly and distinctly considered, makes also the subject of which we affirm or deny. For if it belongs to some genus, that has other species under it, to which the predicate does not agree;
it is plain, that where this genus is that of which we affirm or deny, the predicate agreeing only to a part of it, and not to the whole general idea, constitutes the proposition particular.

Sec. IV - A sure and infallible Criterion, whereby to distinguish betwecn universal and harticular Propositions.
Here then, we have a sure and infallible mark, whereby to distinguish botween universal and particular propositions. Where the predicate agrees to all the individuals comprehended under the notion of the subject, there the proposition is universal ; where it belongs only to some of them, or to some of the spectes of the general idea, there the proposition is particular. This criterion is of easy application, and much safer than to depend upon the common signs of cll, every, somc, none, \&c. becauise these being different in different languages, and often rarying in their signification, are very apt in many cases to miskead the judgment. 'lias if we say, all the soldiers ehen dravon uf, fismed a square of a hundred men a :ide: it is cridulit that the predicate cannot be affirmed of tle sever:l individuals, but of the whole crilective idea of the smbject; whence, by the rule griven alove, tive propnsition is not miversal. It is tive, Irsiciatis lay down many obsematiosis, to cmeble us to distinguish aright on this head: but if the criterin here given be duly attended te, it will be of nore: real service to us than an hundred rules. Fer it is iniallible, and may be applied with ease; whereas the directima, whish we mect with in treatises of fosil, being drawn fer the most pat feom the anali?y of langenese, and common forms of spech, are

Sec. V.—Singular Prohositions contained under the head of harticulars.

There is still one species of propositions that remains to be described; and which the more deserves our notice, as it is not yet agreed among logicians, to which of the two classes mentioned above, they ought to be referred. I mean singular propositions; or those where the subject is an individual. Of this nature are the following: Sir Isaac Nezwton was the inventor of fluxions; this book contains many useful truths. What occasions some difficulty, as to the proper rank of these propositions, is, that the subject being taken according to the whole of its extension, they sometimes have the same effect in reasoning, as universals. But if it be considered, that they are, in truth, the most limited kind of particular propositions, and that no proposition can, with any propriety, be called universal, but where the subject is some universal idea; we shall not be long in determining to which class they ought to be referred. When we say, some books contain useful truths, the proposition is particular; because the general term appears with a mark of restriction. If, therefore, we say, this book contains useful truths; it is evident, that the proposition must be still more particular, as the limitation, implied in the word, this, is of a more confined nature, than in the former case. - I know there are instances, where singular propositions have the same effect in reasoning, as universals ; yet is not this, by reason of any proper universality, belonging to them; but because the conclusion, in such cases being always singular, may be proved by a middle term which is also singular ; as I could easily demonstrate, were this a proper place for entering into a discussion of that nature.

Sec. VI.一The Fourfold Division of Prohositions.
We see, therefore, that all propositions are either affirmative or negative; nor is it less evident, that in both cases, they be universal or phurticular. Hence arises that celebrated fourfold division of them, into universal affirmative, and universal negative; particular affirmative, and farticular ressative; which comprecherids, indeed, all their varieties. The use of this method of distinguishing them will appear more fully afterwards, when we come to treat of reasoning and syllogism.

CHAD. IV.
OF ABSOLUTE AND CONDITIONAL PROPOSITIONS.
Sec. I.—Distinction of Qualitics into iessomial and ACcillinial.

THF objects, about which we are chiefly conversant in this world, are all of a noture liable to changeWhat may be affirmedrof them at one time cannot often at another; and it makes no small part of our knowledge to distinguish rightly these variations, and trace the reasons u;on which they depend. For it is observable, that amidst all the vicissitudes of nature, some things remain constant and invariable ; nor are even the changes to which we see others liable, effected, but in consegucnce of uniform and steady laws, which, when known, are sufficient to direct us in our judgments about them. Hence philosophers, in distinguishing the objects of our perception into various classes, have been very careful to note, that some propertics belong essentially to the general idea, so as not to be separable from it but by desrtoying its vel'y nature ; while other's are only accidental,
and may be affirmed or denied of it, in different circumstances. Thus, solidity, a yellow colour, and great weight, are considered as essential qualities of grold; but whether it shall exist as an uniform, conjoined mass, is not alike necessary. We see that ty a proper menstruum, it may be reduced to a fine powder; and that intense heat will bring it into a state of fusion.
Sec. II.-Hence a considerable Diversity in our Manner of judsing.
Now, from this diversity in the several qualities of things, arises a considerable difference as to the manner of our judging about them. For in this first place, all such properties, as are inseparabie from objects, when considered as belonging to any genus or species, are affirmed absolutely and without reserve of that general idea. Thus we say, gold is ve$r y$ weighty; a stone is hard; animals haver a forver of self-motion. But in the case of mutable or accidental qualities, as they depend upon some other consideration, distinct fiom the general idea; that also must be taken into the account, in order to form an accurate judgment. Should we affirm, for instance, of some stones, that they are very susceptible of a rolling motion ; the proposition, while it remains in this general form, cannot with any advantage be introduced into our reasonings. An aptness to receive that mode of motion flows from the figure of the stone; which, as it may vary infinitely, our judgment then only becomes applicable and determinate, when the particular figure, of which volubility is a consequence, is also taken into the account. Let us then bring in this other consideration, and the proposition will run as follows: stozes of a stherical form are easily put into a rulting motion. Here we sae the condition upon
which the predicate is affirmed, and therefore know in what particular cases the proposition may be applied.
Sec. III.—Which gives rise to the division of Protositions into Absolute and Conditional.

This consideration of propositions, respecting the manıer in which the predicate is affirmed of the subject, gives rise to the division of them into absolute and conditional. Absolute propositions are those, wherein we affirm some property inseparable from the idea of the subject, and which, therefore, belongs to it in all possible cases; as, God is infinitely wise : viritue imuix to the ultimate hatifines. of man. But where the predicate is not necessarily connected with the idea of the subject, unless upon some consideration distinct from that idea, there the proposition is calied conditional. The reason of the name is taken from the supposition annexed, which is of the nature of a condition, and may be expressed as such. Thas ; if " stone is exposed to the rays of the sun, it will conitract some dicree of heat. If a river muns in a cory dectu:ing channel, its rafidity will constandly increase.

$$
\begin{aligned}
& \text { Scc. IV.—The Errat imfortance of this citivision, as it } \\
& \text { renders Propositions determinate; }
\end{aligned}
$$

There is not any thiner of greater importance in phitosophy, than a due attention to this division of propositions. If we are careful never to affirm things absolutely, but where the ideas are inscparably conjoined; and if, in our other judgments, we distinctly mark the conditions which determine the predicate to belong to the subject; we shall be the less liable to mistake, in applying general trutlis to the particular concerns of human life. It is owing to the exact observance of this rule, that mathematicians have been
so happy in their discoveries; and that what they demonstrate of magnitude in general, may be applied \because ith ease in all obvious occurrences.
Sec. V.-And reduces them from particulars to generals.
The truth of it is, particular propositions are then known to be true, when we can trace their connexion with universals : and it is, according! , the great busimess of science, to find out general truths, that may tce applied with safety in ail obvious instances. Now the great advantage arising from determining with care the conditions upon which one idea may be aflimed or denied of another, is this; that thereby particular propositions really become universal, may be introduced with certainty into our reasonings, and serve as standards to conduct and regulate our judgments. To illustrate this by a familiar instance: if we say, some zuluter acts very forcibly; the proposition is particular: and as the conditions, on which this forcible action depends, are not mentioned, it is as yct uncertain in what cases it may be applied. Let us then supply these conditions, and the proposition will run thus; water corveyted iaz sufficient quantity alons a stepfl disciat, acis very forcibly. Her: we have an universal jusument, inasmuch as the predicate, forcilite action, may be ascribed to all water under the circumstances mentioned. Nor is it less evident, that the proposition in this new form is of easy application : and in fact we Excl, that men do apply it in instances where the forcible action of water is required; as in com-mills, and many other works of art. Thus we see, in what manner we are to proceed, in order to arrive at universal truths, which is the great end and aim of science. And indeed, would men take the same cart, duly to express the conditions on which they affirm and deny, as mathematicians do, in those
theorems which they term hypothetical, I doubt not, but we might be able to deduce many truths, in other parts of philosophy, with no less clearness, force and perspicuity, than has hitherto been thought peculiar to the science of quantity.

CHAP. V.

OF SIMPLE AND COMPOUND PROPOSITIONS.
Scc. I.—Division of Prohositions into Simple and
C'mmfound.
H: only two idens are compared together. These are, in the sfoncr:3, called wimplle; because, having but one sulject and ons: predicate, they are the effect of a simple juis, ment that admits of no subdivision. But if it so hapipers, that several ideas offer themselves to our thoughts at once, wherely we are led to affirm tice same thing of difierent objects, or different things of the same object ; the propositions, expressing these judsmenti, are called comfound: because they may Le: anowul into as many others at; there are subjects or predicate; in the whole complex determination of the miad. ' 1 inus, God is infinitely rise and infinitely lomerful: here there are two predicates, infinite suisdom and infinite forat r, both affirmed of the same sub. $j e c t$; and accordinsiy, the proposition may be resolvcil into two others, afliming these predicates several5: In like manner, in the propesition, neither kings $n: r$ hot le ure cxemitt from dorith, the predicate is desind of l,e h suijects, and may therefore be separated from them, in distinct propositions. Nor is it less cidult, that if a complex judgment consistsof several sujpects and grulicaics, it may be resolved inis as
many simple propositions as are the number of different ideas compared togethẹ. Riches and honore are aft to elate the mind, and increase the number of our desires. In this judgment, there are two subjects and two predicates: and it is at the same time apparent, that it may be resolved into four distinct propusitions. Riches are aft to clate the mind. Riches ure att to increase the number of our desires. And so of honours. Sec. II.-The froher Notion of a Comtound Proposition ascertained.

Logicians have divided these compound propositions into a great many different classes; but in my opinion, not with a due regard to their proper definition. Thus conditionals, casuals, relatives, $\} c$. are mentioned as so many distinct species of this kind, though in fact they are no more than simple propositions. 'To give an instance of a conditional: If a stone is exposed to the rays of the sun, it will contract some degree of heat. Here we have but one subject and one predicate; for the complex expression, A stone exprosed to the rays of the sun, constitutes the proper subject of this proposition, and is no more than one determinate idea. The same thing happens in casuals. Rehoboam woas unhathy, because he followed evil counsel. I deny not, that there is here an appearance of two propositions arising from the complexity of the expression; but when we come to consider the matter more nearly, it is evident that we have but a single subject and predicate.-The pursuit of evilcounsel brousht misery ufon Rehoboam. It is not enough, therefore, to render a proposition compound, that the subject and predicate are complex notions, requiring sometimes a whole sentence to express them: for in this case, the comparison is still confined to two ideas, and constitutes what we call a simple judgment. But
where there are several subjects or predicates, or both, as the affirmation or negation may be alike extended to them all, the proposition, expressing such a judgment, is truly a colluction of as many simple ones, as there are different ideas compared. Confining ourselves, therefore, to this more strict and just notion of compound propositions, they are all reducible to two kinds, viz copulatives and civyunctivers.

Sec. III.—Comfiound Proftrsition.s either Cofulative,

A cohulative proposition is, where the subjects and predicates are so linked together, that they may be all severally affirmed or denied one of another. Of this nature are the examples of compound propositions given above. Riches and honors are aft to elate the mind, and incrcase the mumbor offour desires. Niother kings nor heople are exentht from death. In the first of these, the two predicates may $\mathrm{b}=$ affirmed severally of each subjee:, whence we have four distinct p:opositions. The other furnishes an example of the negatise kind, where the same predicate being disjoined from both subjects, may be also denied of them in scparate propositions.
Sec. IV.—Or Disjunctive.

The other species of compound propositions are those called disjunctives; in which, comparing seseral predicates with the same subject, we affirm, that one of tiom necessarily belongs to it, but leave the particular predicate undetermined. If any one, for example, says: This.s world either exists of itsilf, or is the work of some all-wvise and howerful cause; it is cvident, that one of the two predicates must belong to the world ; but as the proposition determines not which, it is therefore of the kind we call lii junctive. Such, too, are the following: The sall cithtr movee
round the earth, or is the centre about which the enth revolves. Friendshit finds men equal, or makes them so. It is the nature of all propositions of this class, supposing them to be exact in point of form, that upon determining the particular predicate, the rest are of course to be removed; or if all the predicates but one are removed; that one necessarily takes place. Thus, in the example above, if we allow the world to be the work of some wise and powerful cause, we of course deny it to be self-existent; or if we deny it to be self-existent, we must necessarily admit that it was produced by some wise and powerful cause.Now this particular manner of linking the predicates together, so that the establishing one displaces all the rest-or the excluding all but one necessarily establishes that one-cannot otherwise be effected than by means of disjunctive particles. And hence it is, that propositions of this class take their names from these particles, which make so necessary a part of them, and indeed, constitute their very nature, considered as a distinct species. But I shall reserve what farther might be said on this head, till I come to treat of reasoning, where the great use and importance of disjunctive propositions will better appear.

CHAP. VI.

OF THE DIVISION OF PROPOSITIONS INTO SELF-EVIDENT AND DEMONSTRABLE.

Sec. I.-Design of this Chafter.

As we are soon to enter upon the third part of logic, which treats of reasoning-and as the art of reasoning lies in deducing propositions whose truth does not
immediately appear, from others more known-it will be proper, before we proceed any farther, to examine a little the different degrees of evidence that accompany our judgments; that we may be the better able to distinguish in what cases we ought to have recourse to reasoning, and what those propositions are, upon which, as a sure and unerring foundation, we may venture to build the truth of others.
Sec. II.—Profositions divided into Silf-exidiat and Demonstrable.
When any proposition is offered to the view of tiee mind, if the terms, in which it is expressed, are understood; upon comparimg the ideas together, the agrecment or disagreement asserted is cither immediately perceived, or found to lie beyond the present reach of the understanding. In the first case, the proposition is said to be scif-rvilent, and admits not af any proof; because a bare attention to the ideas themselves produces full conviction and certainty; nor is, it possible to call in any thing more evident by way of confirmation. But where the comexion or repugnarace comes not so readily under the inspection of the mind, there we must have recourse to rcasoning ; and if, by"a clear series of provis, we can make out the truth proposed, insomuch that self-evidence shall accompany every step of the procedure, we are then able to demonstrate what we assert ; and the proposition itself is said to be demonstrable. When we affirm, for instance, that it is impossible for the same thing to be and not to be; whoever understands the terms made use of, perccives, at first glance, the truth of what is asserted; nor can he, by any efforts, bring l:imself to belicve the contrary. The proposition therelore is selfevident, and such that it is impossible by reasoning to make it plainer; because there is no
tiuth more obvious, or better kizom, from which, as a consequence, it may, be deduced. But if we sa:, his surtd had a bo, gming; the assertion is indeed equally tuac, but shates bot forth with the same ciegree of evideace. II e find great diffculty in conceiving how the word could be made out of nothing ; and ase not brought to a free and full conserit, until by reasoning- we arrive at a clear vitw of the absurdity involved in the contrary supposition. Hence this propustion is of the kind we call demonstrable, inasmach as its truth is not immediately perceived by the mind, but yet may be made appear by means of othens more known and obvious, whence it foilows as an unavoidable cunserpunce.
 wifined wandiy to Intuition.
From what has been said, it appears that reasmins is ena!lure? only abott demonstrable propositions, and the rer inthive and selferident perceptions are the ubimate foundation on which it rests. And now we soe clearly the reason, why in the ciotinction of the powers of the inderstendiag as exphaned in the introduction to the tecutise, we scond comton of the mind was conmat wishly to manlive act: Our first step, in the way to knowledre, is to Finish ourslves with ineus. When these are citaincd, we next set curscious to compare them iosether, in order to judge of their agrement or disasreement. If the relations we are in quest of, lie i:nmediaty open to the view of the mind, the juderments expressing them are ciferidiat; and the act of the mind, fom:ny these judpments, is what we call intuition. But:', upon comparing our ideas toswow, we connct rochy and at once the their relation, it chen becomes nceessary to enploy search
and examination, and call in the assistance of seif-erident truths, which is what we properly term reasening. Every judgment, therefore, that is not intuitio, being gained by an exercise of the reasoning faculy, necessamy belongs to the third operation of the mind, and ought to be referred to it in a just division of the powers oi the unde:standing. And indeed it is with this view chichy, that we have distinguished page sitions inde scli-wident and demonstrable. Le..er the frest heed are comprehended all our intuitive jan:minats, that is, all lomping to the second operation of the mind. Demetristable propositions are we proper province of the reasoning faculty, and conatitute is far the most considerable part of human kowlerige. Indeed rawon extends aso to matters of capericnce and testimony, where tio pows adduced ate wot of the kind called denemennon. Dat I am here only considering the p.ent. , of the mina as cuphoyed in tracing the relations bucen its o a incas, in which view of himes, wey teme propothen i) demonstrabk ; though very oflen we fand whenes inrapable of discovering and applyin; those intemedate ineas upon winch the dumustation deperai . Sec. N.—Silforiaion Truths the first Princilitis of Rawemen.
 pery th the that opration of the mind, I whe, bor dhe prean!, disnas:s them, and retarian the con-
 realy , ,inconed, furnish the time priuciphes of reason-is:-; and it is certain, that if in our researches, we woploy oaly such principles as have this character of seif-sinar, and apply them according to the rulcs tw be aftewath; explained, we shall be in no duager of errar, in adrancing from one disconery to
another. For this i may appeal to the writings of the mathematicians, which, being conducted by the express model here mentioned, are an incontestible proof of the firmness and stability of human know!edge, when built upon so sure a foundation. For not only have the propositions of this science stood the test of ages, but are found attended with such invincible evidence, as forces the assent of all who duly consider the proofs upon which they are established. Since then mathematicians are universally allowed to have hit upon the right method of arriving at truths-since they have been the happiest in the choice, as well as application of their princinles-it may not be amiss to explain here the divisions they have siven of self-evident propositions; trat, by treading in their steps, we may learn something of that justness and solicity of reasoning, for which they are so derewod!y wremed.
Sir. V.-Defaitionsa creathrlh to Clearness and Eridenc, is hicucelcas.

First, then it is to le cicerver, that the have been very cachel in ascotaining their istas, and fixjug the sigifontica of their terms. For this purpuse they begin with chmibene, in which the meand of then words is so distimetiy explained, thit they canuri fail to escite in the mind of an atientinc reader tie wey same ideas as dic whened to them by the woits. Ambedecd and apt to thins, that the olurness andirusishbe ericence of mathematichanolecige, is owins to nothing so much as this care in ldibe the fomblen. Whare the ration betwen ary two jexen is accuracy and justly tuced, it will not be dificuif for another to comprehend that whtim, if in suther himelf to cisrover it, he brings the very same ducis hito comparison. But if, on the
contrary, he affixes to his words ideas different from those that were in the mind of him who first advanced the demonstration; it is evident, that as the same ideas are not compared, the same relation connot subsist, insomuch that a proposition will be rejected as falsa, which, had the terms been rightly understooch, must have appeared unexceptionably true. 'A squre, for instance, is a figure bounded by four equal right lines, joined together at right angles. Here the ma. ture of the angles make no less a part of the idea, than the equality of the sides; and many properties demonstruced of the square, flow from its being a rec. tangular figure. If, therefore, we suppose a man whis has formed a partial notion of a square, comprehending only the cil:aity of its sides, without regard to the angles, reaciing; some demonstration that imphes alse this latter consideration; it is plain he would reject it as not universally true, inasmuch as it coud not be applied where the sides were jomed wother at mequy angies. For this last figure, asucting still to his idea of a sciare, would be yet fimmel without the propery assigned to it in the proIM, itian. But if he comes afterwards to correct his iothen, and reader his idea complete, he will then readity own the twhin and juptacss of the demonstram.
Sce. VI.—Muthematiciuns by beginning quith them, hr:curi a realdy reccution to the truths they adrence.
We see, thecifore, that nothing contributes so much to the imporement and certanty of humen howledre, as; the having deteminate iteas, and kecping them steady and invatiabic in all our discourses and reasonings about them. Amol on this ancombt it is, that mathematicians, as was before r.l.-

distinctly unfolding the notions they are intended to express. Hence such as apply themsclves to these studies, having exactly the same riews of things, and bringing always the very same ideas into comparison, readily discern the relations betiveen them, when clearly and distiactly represented. Nor is there any more natural and chrious reason for the universal reception wiven to mathematicel truths, and for that fiurmony and correspondence of sentiments which makes the destingushing character of the literua of this class.
Sec. Vit.-The estathore of Principles the Second

When they have taken this first step, and made known the ideas, whose relations they incend to invabget, their next case is, to lay down some selfcedent truths, which may seme as a ionndentor for their futhere reasonings. And here, indeed, they profeed with remarkable cincumspertion, admitting rio principies but what fow inmertitely from their dewhitons, and necessenty force termselves upon a nom in eny degretatminc to its perceptions. Thus a circle is a fige fomint by a right line, moving round some fined yoint in the same plane. 'The fixed point, round whis the linc is supposel to more, :ad where one or its extremitits terminates, is called the centre of the circle. The oher extenity, which is concived whe carried roun, until it recurns to the point whabe it frot set chit, describes a curie ruming into itoce, and termed the circuing rence. All right lines, dwom foom the centre to the circumierence, are culce reiz. From these defintions compared, gometricians derive this self-evident truth, that the radii rff the same circle are all equal one to a:ci.jo. I cail it self-evident, because nothing more is
required, to lay it open to the immediate preception of the mind, than an atientisn to the ideas comparefl. For from the vey nature of a circle it is plam, that the circumberace is ciery where distant from the centre, by the exact length of the descriminy line; and that the several radii are in truth notions more, than one and the same line variously posited within th: ferure. This short description will, I hope, serve to give some little insight into the manner of deduring mathematical principles, as well as into the nature of that evidence which accompanies them.
Ser. VIII.—Propositions divided into Sfeculative ciad Practical.

And now I proceed to observe, that in all proposifirlis we cither aftirm or deny some property of the idea that constitutes the subject of our juitement, or ve mantain that soncthing may be done or cffectca. The first sort is called virculutior propersitions, as in tie example montioned above the ratio of the seme circt: are cll equal ,ur to ano:act. The others are calied fractical, for a reason too chsiotus to be mentionerl ; thus, that a risht line mos be drazen from に, foill to anothr, is a prectical proposition ; inaswncil as it copesses t'at something may be done.
 ri int" A i ims and Postalu;s.
From this twofold consideration of propositions, arises tie twolold division of mathematical arinifles, into axioms and foutatute. By an axiom they unde:siand uny self-ivident speculative truth : is, that the whole is frrefer than its furts : that "niss ciual to one and the same thint, ure equal to one another. But a self-evident fracticul proposition is winat they call

right line may be continued directly forwards : that a circle may be described about any centre with any disstance. And here we are to observe, that as in an axiom, the agreement or disagreement between the subject and predicate, must come under the immediate inspection of the mind ; so in a postulate, nct only the possibility of the thing asserted must be crident at first view, but also the manner in which it may be effected. But where this manner is not of itself apparent, the proposition comes under the rotion of the demonstrable kind, and is treated as such hy the geomatrical writers. Thus, to drave a line from one ploint to another, is assumed by Euclid as a hostulate, because the manner of doing it is so obvious, as to require no previous teaching. But then it is not equally evident, how wer are to construct an cquilateral triangle. For this reason he advances it as a demonstrable proposition, lays down rules for the exact performance, and at the same time proves, that if these rules are followed, the figure will be justly described.
Sec. X.-Anaidemonstrable Profositions into Theorema and Problems.
This naturally leads me to take notice, that as selfevident truths are distinguished into different kinds, according as they are speculative or practical ; so is it also with demonstrable propositions. A demonstrable speculative proposition is by mathematicians called a theorem. Such is the famous 47 th proposition of the first book of the Elements, known by the name of the Pithagoric theorem, from its supposed inventor, Pithagoras, viz. That in every right-angled triangle, the square described ufion the side subtending the right angle, is equal to both the squares described ution the sides containing the right angle. On the other hand,
a demonstrable practical proposition is called a probLem; as where Euclid teaches us to describe a square ufion a given right line.
Sec. X1.-Corollaries are obvious deductions from Theorems or Probbems.

Since I am upon this subject, it may not be amiss (1) avict, that besides the four kinds of propositions already mentioned, mathenaticions have aiso a fifth, kinwan by the name of corollaries. These are usually subjoined to theorems or aroblems, and differ from thich only in this, that they ins from what is there desenstrated, in so obvious a manner as to discover ticire depeadence upon tie prowetion whence they are dechucch, aboost as soon as proposed. Thus diuctid having demonstrated, that in coriy right-lined riangh, all the ihro angles token tegether, are ageat to two risht angles; adus, by way of conoluy, thet all the tiroce anches any one triangle taho together, are comel to wht the three angles of ary offer wist, tuinn traseiter: which is cricult at first sight; lecase in all cases they are equal to tho rie, hones, and things equal to two and the same thing, are equal to one another.
Sce. XII.—Scholia serves the priposes of Animaiations or a C'ummens:.

The last 1 !ime I shall take notice of, in the practice of the matlomaticans, is what they call their scholia. They ate indifierently annexed to definitions, properitionis, or corollaries ; and answer the same purposes as amotations upon a clasesic author. Ior in them occasion is taken, to explain whaterer may appear intricate and obscure in a train of reasonins; ? answer oljections; to teach the application and uses of propositions ; to lay open the original and history of the several discoveries made in the science ; and in
a word, to acquaint us with all such particulars as deserve to be known, whether considered as points of curiosity or profit.

> Sec. XIII.—This Method of the Mathematicians universal, and a sure guide to Certainty.

Thus we have taken a short view of the so much celebrated method of the mathematicians ; which, to any one who considers it with a proper attention, must needs appear universal, and equally applicable in other sciences. They begin with definitions. From these they deduce their axioms and postulates, which serve as principles of reasoning; and having thus laid a firm foundation, advance to theorems and problems, establishing all by the strictest rules of demonstration. The corollarits flow naturally and of themselves. And if any particulars are still wanting to illustrate a subject, or complete the reader's information ; these, that the series of reasoning may not be interrupted or broken, are generally thrown into scholia. In a system of knowledge so uniform and well connected, no wonder if we meet with certainty; and if those clouds and darknesses, that deface other parts of human science, and bring discredit even upon reason itself, are here scattered and disappear.
Sec. XIV.—Self-evident Truths known by the antharent unavoidable Connexion between the Subject and Predicate.
But I shall for the present wave these reflections, which every reader of understanding is able to make of himself, and return to the consideration of self-evident propositions. It will, doubtless, be expected, after what has been here said of them, that I should establish some criteria, or marks, by which they may be distinguished. But I frankly own my inability in
this respect, as not being able to conceive any thing in them more obvious and striking, than that self-evidence which constitutes their very nature. All I have therefore to observe on this head, is, that we ought to make it our first care, to obtain clear and determinate ideas. When afterwards we come to compare these together, if we perceive between any of them a necessary and unavoidable connexion, insomuch that it is impossible to conceive them existing asunder, without destroying the very ideas compared; we may then conclude, that the proposition expressing this relation is a principle, and of the kind we call self-evident. In the example mentioned above, the radii of the same circle are all equal between themselves, this intuitive evidence shines forth in the clearest manner; it being impossible for any one, who attends his own ideas, not to perceive the equality here asserted. For as the circumference is every where distant from the centre by the exact length of the describing line; the radii drawn from the centre of the circumferctice, being secerally equal to this one line, must needs also be cupal atmong themselves. If we suppose the radii unequal, we at the same time suppose the circumference more distant from the centre in some places than in others ; from which supposition, as it would exhibit a figure guite different from a circle, we see there is no separating the predicate from the subject in the proposition, without destroying the idea in relation to which the comparison was made. The same thing will be found to hold in all our other intuitive perceptions, insomuch that we may establish this as an universal criterion, whereby to judge of, and distinguish them. I would not, however, be understood to mean, as if this ready view of the unavoidable connexion between some ideas was any thing seally different from self-evidence. It is, indeed,
nothing more than the notion of self-evidence a little unfolded, and as it were laid open to the inspection of the mind. Intuitive judgments need no other distinguishing marks, than that brightness which surrounds them ; in like manner as light discovers itself by its own presence, and the splendor it universally diffuses. But I have said enough of self-uident propositions, and shall therefore now proceed to those of the demonstrable kind; which, being gained in consepucace of reasoning, naturally leads us to the third part of logic, where this operation of the understanding is explained.

BOOK III.

OF REASONING.

> cilys.
ur refsoying in genliral, and the parts of which it coisists.

Str. I.-Rcmite Relations discruered by means of intermediate Bucts.

E have seen how the mind nocerels in furnishins itself with ideas, and framing intuitive percepiors. Let us next inquire into the manner of discraering those nore remote relations, which, lying is a distance from the understanding, are not to be : weal bui by means of a higher exercise of its powcis. It ofen happens in comparing ideas together, 1. at their aceement or disagreement cannot be discemed at inst view, especially if they are of such a
nature, as not to admit of an exact application one to another. When, for instance, we compare two figures of a different make, in order to judge of their equality or inequality, it is plain, that by barely considering the figures themselves,' we cannot arrive at an exact determination; because, by reason of their disagreeing forms, it is impossible so to put them together, as that their several parts shall mutually coincide. Here then it becomes necessary to look out for some third idea, that will admit of such an application as the present case requires; wherein if we succeed, all difficulties vanish, and the relation we are in quest of may he traced with ease. Thus rightlined figures are all reducible to sciuares, by means of which we can muandur their areas, and determine exactly their agreement or disagrement in point of magnitude.
Scc. II.-7\%is manner of arriving at Truth and termed hicassinims.
If aow it be asticd, how any thirdidea can serve to disener a refutima between two rifices; I answer, by being compared severally with these others; for such a ronupurem enables us to see how far the ideas, with which this third is compared, are comected or disjoined betwera them:sives. In the example mantioned abeve, of tiro right-lined figures, if we compare can hof them with some square whose area is known, and find the one exactly equal t it, and the other $\mathrm{l}: \mathrm{s}$ by a squas-inch greater than that of the second. This manner of determining the relation between athy two ideas, by the invention of some third with whis they buy be comparch, is that which we call rouso14, and iadecal the chief instrument, by which we
 The great art ios, in finding out such intemedive
ideas, as, when compared with the others in the question, will furnish evident and known truths ; because, as will afterwards appear, it is only by means of them, that we arrive at the knowledge of what is hidden and remote.
Sec. III.-The harts that constitute an Act of Reasoning and a Syllogism.
From what has been said, it appears that every act of reasoning necessarily includes three distinct judgments; two, wherein the ideas, whose relation we want to discover, are severally compared with the middle idea; and a third, wherein they are themselves connected or disjoined according to the result of that comparison. Now as in the second part of logic, our judgments when put into words, were called propo-sitions-so here, in the third part, the expressions of our reasonings are termed syllogisms. And hence it follows, that as every act of reasoning implies three several judgments, so every syllogism must incinde three distinct propositions. When a reasoning is thus put into woric, and appears in form of a syllogism, the intermediate idea, made use of to discover the agreement or disagreement we search for, is called the middle term; and the two ideas themselves, with which this third is compared, go by the name of the catremes.

Sec. IV.—Instance, Man and Accountableness.
But as these things are best illustrated by exampes; let us, for instance, set ourselves to enquire, whether men are accountable for their actions. As the relation between the ideas of man and accountableness comes not within the immediate view of the mind, our frist care must be, to find out some third idea, that vill enable us the more easily to discover and trace it.

A very small measure of reflection is sufficient to inform us, that no creature can be accountable for !is actions, unless we suppose him capable of distinguishing the good from the bad ; that in, unless we suppose him possessed of reason. Nor is this alone sufficient. For what would it a ail him, to know good from bad actions, if he had no fitelom of choice, nor coukl avoid the one, and pursue the other? Hence it becomes necessary to take in both considerations in the present case. It is at the same time equally apparent, that wherever there is this ability of distinguishing good from bad actions, and pursuing the olse and avoiding the other, there also a creature is accountable. We have thin got a third idea, with which accountableness is inseparally connected, riz. reason and liberty; which are here to be considered as making, up one complex conception. Let us now take this middle idea, and compare it with the other term in the question, ziz. man, and we all know by experience, that it may be affirmul of him. Haring thus, by means of the intermeriiate idea, formed two several judgments, riz. that mun is flassessed of reason and lijurty; and that rason and liberty imily accountableness; a third obviously and necusaily fillows, viz. that man is accountable for his actions. Here thea we have a complete act of reasoning, in which, according to what has been already observed, there are three distinct judgments; two that may be styled previous, inasmuch as they lead to the other, and arise from comparing the middle idea with the two ideas in the question; the third is a consequence of these previous acts, and flows from combining the e:treme ideas between themselves. If now we put this reasoning into words, it exhibits what logicians term a syllogism, and, when proposed in due form, runs thus:
Every creature possessed of reason and liberty is accountable for his actions.

Man is a creature possessed of reason and lioerty.
Therefore man is accountable for his actions.
Sec. V.—Premiscs, conclusion, extremes, middle term.
In this syllorism we may observe, that there are three seseal propositions, expressing the three judr. ments implied in the act of reasoniag, and so diporso ed as to represent distinctly what passes witwin the miad, in tracmg the more distand rebainns of its idew. The iwo fret propositions answer the two previous juirments in reasoning, and are called the firmisos, because they are placed before the other. The thind is termed the conctusion, as beirs; gained in consequence of what was asserted in the premises. Vie are also to remember, that the terms cipessing the two ideas whos relation we expure alter, as here man and accomtablemest, are in geierai, called the r tremes; and that the intematiate idta, ly means of which the relation is traced, wiz. a crruitury gosessed of reassia and libroty, takes the name of the miadit term. Hence it follows, that by the fremiscs of a syllogism, we are always to understand tite two propositions, where the middle term is severally compared with extremes; for these constitute the pievious judgments, whence the truth we are in quest of is by reasoning deduced. The conclusion is, that other piopositions, in: which the extremes themselves are joined or separated, argecably to what appears tepon the above comparison. All this is evidently seen in tiac foregoing syllogism, where the two first propositions, which represent the premises, and the third, which makes the conclusion, are exactly agreeable to the definitions here given.

Sec. VI.-ELajor and Menor Term, Major and Minor Profrosition.

Before we take leave of this article, it will be farther necessary to observe, that as the conclusion is
made up of the extreme terms of the syllogism ; so that exteme, which serves as the predicate of the conclusinn, goes by the name of the major term: the other extreme, which makes the subject in the sume proposition, is called the minor term. From this distinction of the extremes, arises also a distinction between the premises, where these extienies are severaily compared with the middle term. That proposition, which compares the greater extreme, or the predicate of the conclusion, with the middle term, is called the major frotosition : the other, wherein ti:som: middle term is compared with the subject of the conclusion, or lesser extreme, is called the minor firofossition. All this is obvious from the syllesisim already given, where the conciusion is, man is accountabte jor his; actions. For here the predicate, uccountable for his arioms, being connected with the middle term in the first of the two premises. Lerery creature piosscssed of reason and liberty is accountable for his acfishe, grives what we call the major firofosition. In the croud of the prenises, man is a creature possesscd rason and lin'rly, we find the lesser extreme, wr subject of the conclusion, viz. man, connected with the same middle term, whence it is known to be the minor arohesition. I shall only add, that when a syllogism is proposed in due form, the maj proposition is always placed first, the minor nest, and the conclusion last, according as we hate done in that oflered above.

Sec. VII.-Judsment and Prohosition, Reasoning and Sullt,gism distinguished.

Having thus cleared the way, by explaining such terms, as we are likely to have occasion for in the progress of this treatise ; it may not be amiss to obsorve, that though we have carefully distinguished
between the act of reasoning, and a syllogism, which is no more than the expression of it, yet common language is not so critical on this head; the term reasoning being promiscuousiy used, to signify cither the judgments of the mind, as they follow one anothor in train, or the propositions expressing these judgments. Nor need we wonder that it is so, inasmuch as our ideas, and the terms appropriated to them, are so connected by habit and use, that our thoughts fall as it were spontaneously into language, as fast as they arise in the mind ; so that even in our reasonings within ourselves, we are not able wholly to lay aside words. But notwithstanding this strict connexion between mental and veriod reasoning, if I may be allowed that expression, I thought it needful here to distinguish them, in order to give a just idea of the manner of deducing one truth from another. While the mind keeps the ideas of things in view, and combines its judgments according to the real evidence attending them, there is no great danger of mistake in our reasonings; because we carry our conclusions no turther than the clearness of our perceptions warrants i.s. But where we make use of words, the case is often otherwise; nothing being more common, than to let them pass without attending to the ideas they represent ; insomuch that we frequently combine expressions, which upon examination appear to have no determinate meaning. Hence it greatly imports us to distinguish between reasoning and syllogism ; and wake care, that the one be in all cases the true and just representation of the other. However, as I am unwilling to recede too far from the common forms of speech, or to multiply distinctions without necessity, I shall hence forward consider propositions as representing the real judgments of the mind, and syllogisms as the true copies of our reasonings; which
indeed they ought always to be, and undoubterlly always will be, to men who think justly, and are desi:ous of arriving at truth. Upon this supposition there will be no danger in using the words judgment and proposition promiscuously ; or in considering reasoning as either a combination of various judgments, ir of the propositions expressing them; because, bcin:s the exact copies one of another, the result will be in all cases the same. Nor is it a small advantage, tist we can thus conform to common speech, without confounding our iteas, or running into ambiguity. By this means we bring ourselves upon a lerelwith other men, readily apprehend the meaning of their cepresions, and can with ease convey our own notions and sentiments into their minds.

Sec. VIII-In a single .Ict of Rinwinitr, the I'romis-

 es must be intuitive $\begin{aligned} & \text { Trran... }\end{aligned}$These things premised, we may in the gence! define reasoning to be an act or sfiem'ith of tice mast, deducing some unk nown foronsition, frow other prexime ones that are ruit'mt and known. These prewuls propositions, in a simple act of reasoning, are only two in number; and it is always required that ticy be of themselves apparent to the understanding, insomuch that we assont to and perceive the truth of them as soon as proposed. In the syllogism given athose, the premises are supposed to be self-eviden: truths, otherwise the conclusion could not be inferred by a single act of reasoning. If, for instance, in the major, every creature possessed of reason and liberty is accountable for his actions, the connexion between the subject and predicate could not be perceived by a bare attention to the ideas themselves; it is evident, that this proposition would no less require a proof, than the conclusion deduced from it. In this case, a new
middle term must be sought for, to trace the connexion here supposed; and this of course furnishes another syllogism, by which having established the proposition in question, we are then, and not before, at liberty to use it in any succeeding train of reasoning. And should it so happen, that in this second resey, there was still some perious proposition whose titid did not appear at first sight; we must then have recourse to a chird slogism, in order to lay open that truth to the mind ; because so long as the premises reatain uncertain, the conclusion built upon them must be so too. When-by conducting our thoughts in this mauner, we at last arrive at some syllogism, \because Sere the previous propositions are intuitive truths; the mind then rests in full sccurity, as perceiving Bat the several concluvions it has passed through, sitaid upon the immoveable foundation of self-evidince, and, waen traced to their source, terminate in it.
> sco. M.-Peramirs, in the laighest Fxercise of it, only a Concutenation of Syllogisms.

We see, therefore, that in order to infer a concluSiun by a single act of reasoning, the premises must be intaitive propesitions. Where they are not, previous s:llogisms are required, in which case reasoniug becumes a complicated act, taking in a variety of successive steps. ihis frequently happens in tracits the wote remote relations of our ideas, where many middle term, being called in, the conclusion cinnot tewnede hit, but in consequence of a series of - ioginys folbwing one another in train. Eut alhows it this colatemation of propositions, those the form the aremises of the last sylogism, are of ten considerably wensed from self-evidence; yet if we trace the ;eas miner backwards, we shall find them
the conclusions of previous syllogisms, whose premises approach nearer and nearer to intuition, in proportion as we advance, and are found at last to terminate in it. And if after having thus unravelled a demonstration, we take it the contrary way, and observe how the mind, setting out with intuitive perceptions, couples them together to form a conclusion -how, by introducing this conclusion into another syllogism, it still advances one step farther; and so proceeds, making every new discovery subservient to its future progress-we shall then perceive clearly, that reasoning, in the highest exercise of that facul$t \mathrm{t}$, is no more than an orderly combination of those simple acts, which we have already so fully explaincd. The great art lices, in so adjusting our syllosisms one to another, that the propositions sce erally made use of, as premises, may be manitest comsequences of what goes before. For as by this nec.ut:, every comblum is deduced from known and cswhisheel t:athis, the very last in the series, how far soever we c:ry it, will have no less certainty atconding it, than the ortinal ir uitive pereptions thenselves, in which the whole chain of syilogisms takes its rise.
Scc. X.—Nicuires intaitive C'crtuinty in every Stiph of the Progression.
Tlus we sec, that ranming, begioning with first principies, rises, sathaly fom one fudement to anwher, and comectin them in such maniane, that every stage of the imoreonion brings intuitive certainty aheses with it. And now at lensh we may clearly understand the defation equen above, of this distingushing facuty of the human mind. Rearom, we luve said, is the ability of deducing unknown truths, from principles or propositions that are alreee!, known. This cudently appears, by the loreowin!; accome,
where we see, that no proposition is admitted into a syllogism, to serve as one of the previous judgments on which the conclusion rests, unless it is itself a known and established truth, whose connexion with self-evident principles has been already traced.
S.c. SI.—Sclf-evident Truths, the ultimate Foundation of all Science and Certainty.
There is yet ancther observation which naturally offers itself, in consequence of the above detail, siz. that all the knowledre acquired by reasoning, how far soever we carry our discoveries, is still built upon our intuitive perceptions. Towards the end of the last part, we divided propositions into self-evident and demonstrable, and represented those of the self-evident kind, as the foundation on which the whole superstructure of human science rested. This doctrine is now abundantly confirmed by what has been delivered in the present chapter. We have found, that every discovery of human reason, is the consequence of a train of syllogisms, which, when traced to their source, always terminate in self-evident perceptions. When the mind arrives at these primitive truths, it pursues not its enquiries farther, as well knowing, that no evidence can exceed that which flows from an immediate view of the agreement or disagreement between its ideas. And hence it is, that in unravelling any part of knowledge, in order to come at the foundation on which it stands; intuitive truths are always the last resort of the understanding, beyond which it aims not to advance, but possesses its notions in perfect security, as having now reached the very spring and fountain of all science and certainty.

CHAP. II.

OF THE SEVERAL FIINDS OF REASONING, AND FIRST OF THAT BY WHICH WE DETERMINE THE CENERA AND SPECIES OF THINGS.

Sec. I.-Reasoning Twofold.

WF have cndeavoured, in the foregoing chapter, to give as distinct a notion as possible, of reasoning, and of the manner in which it is conducted. Let us now enquire a little into the discoveries made $2 y$ this faculty, and what those ends are, which we have principally in vicur in the exorcise of it. . Il the aims of human reason may, in the general, be reduced to these two: l. To rank things under those universal ideas to which they tiuly belong; and 2. To ascribe to then their several attributes and properties, in constquence of that distribution.

Scc. II.-The first kind regards the Genera and S/hcies of Things.
First, then I say, that mac great aim of human reason is, to determine the genera and suceics of things. We have sech, in the first part of this treatisc, how the mind procecds in fiamuir; grencral ideas. Vie have also xe $\because l$, in the sccond pail, huw, by means of these general ideas, we come by univensal propositions. Now as in thesc universal propositions, we affirm some property ril a genus or species, it is plain, that we cannot apply this property to particular objects, till we have first determined, whether they are com[nile wied mace that fencral idea, of which the property is affirmed. 'Ihus there are cerdill: properties lecinasing to all roe: number; which nevertheless cannot be ypaicl to ans pariicular :amver, until we
have first discovered it to be of the species expressed by that general name. Hence reasoning begins with referring things to their several divisions and classes in the scale of our ideas; and as these divisions are all distinguished by pecuilar names, we hereby learn to apply the terms expressing general conceptions, to such particular objects, as come under our immediate observation.
Sec. III.—The Stets by wolich que arrive at Conclusions of this sort.
Now in order to arrive at these conclusions, by which the several objects of perceptions are brought under general names, two things are manifestly necessary. First, that we take a view of the idea itself clenoted by that general name, and carefully attend to the distinguishing marks which serve to character ize it. Secondly, that we compare this idea with the object under consideration, observing diligently wherein they agree or difier. If the idea is found to correspond with the particular object, we then, without hesitation, apply the general name; but if no such correspondence intervenes, the conclusion must necessarily take a contrary turn. Let us, for instance, take the number eight, and consider iy what steps we are led to pronounce it an even number. lirst then we call to mind the idea signified by the expression, an even mumber, viz. that it is a mumber divisible into two equal parts. We then compare this idea with the number eight, and finding them manifestly to agree, see at once the necessity of admitting the conclusion. These several judgments therefore, transferred into language, and reduced to the form of a s.llogism, appear thus :
Every number that may be divided into two equal parts, is an even number.

The number eigbt may be divided into two equal parts.
Therefore the number eight, is an even number.
Sc. IV.—Those stefs ciaus: followed, though in fawilisr cases z:e do not always attend to them.
I !a:c mac'e choice of this example, not so much for the sohe oi tixe com in sim, which is obrious enough and misht have bech dianned without all that parade of wrots ; but chat? beratse it is ol ensy comareJomsion, and serves at the same teme ran brify to (zanit the form of rastang ley which the wirle; statimer conctact: itseft in all imataces of tha kind. Ind bere it moy be ols, ila, that where the somed
 fomiliar to tle mind, and focpentiy in ricw ; this
 seem to be mule witnout any aptanatus of rasoming. lihen we sece a horse in the hedu, re a de.. in the strut, we resdily abply the nome of the species; balit, and a fomblar acouantance with the ; in : 1
 are not, l.w... 1 , to inir..nne on this weront, that the

 it ; and habis ate atloniad wioh a certain fromptness oil execution, thet prevents one observare the sueval steps and gradations, by which as collo of wation is accentplished. Fut in other atancer, vhere ve juis, not b; prewnimetod hatis, as, when the beneral ibe is rery complex, or less famifiar to the mind ; we alvass pured acordiers to line form of reasoning estendished atore. A croldsmitio, for installer, who is in doubt as to ally piece of metal, v. hether it be of the spiccies called roid. first examines itu porperas, and twon compaing the: with the fencrad idea signimed b; that name, if he lind a per-
fect correspondence, no longer hesitates under what class of metals to rank it. Now what is this, but foilowing step by step those rules of reasoning, which we have before laid down as the standards, by which to regulate our thoughts in all conclusions of this kind ?

Sec. V.—The Great Importance of this Branch of Reasoning;
Nor let it be imagined, that our researches here, becanse in appearance bounded to the imposing of genrral names upon particular objects, are therefore trivial and of little consequence. Some of the most considerable debates among mankind, and such too, :is nearly regard their lives, interest, and happiness, turn wholly upon this article. Is it not the chief employment of our several courts of judicature, to determine, in particular instances, what is law, justice, wnd equity ? Of what importance is it, in many cases, to decide aright, whether an action shall be terned murder or manslaughter? We see, that no less than the lives and fortunes of rien depend often upon these decisions. The reason is plain. Actions, when once referred to a general idca, draw after them all that may be affirmed of that idea; insomuch that the cetermining the species of actions, is all one with determining what proportion of praise or dispraise, cominendation or blame, \&c. ought to follow them. !or as it is allowed that murder deserves death, by tringing any particular action under the head of murcior, we of course decide the punishment due to it. \therefore Sc. VI.-And the exact observance of it practised by Mathematicians.
But the great importance of this branch of reasoning, and the necessity of care and circumspection, in
referring particular objects to general ickas, is still farther evident from the practice of the mathemat:cians. Every one who has read Euclid, krows, that he frequently requires us to draw lines through certain points, and according to such and sucin directions. The figtres then ceresulting are often squares, parallelograms, or rectangles. lict latia' nuerupposes this from their bare appearance, but always ritmonstrates it upon the strictest principles of geometry. Nor is the method he takes, in any thing thiferent from that described above. Thus, for instance, having defined a square to be a figure bounded liy four equal sides, joined together at rivit angles; when such a figure arises in any construction provious to the demonstration of a proposition, ie yet never calls it by that name, until he has chown that i.ie sides are equal, and all its angles right ones. Now this is apparently the same form of rascuinc we have before exhibited, in proving cishe to be an even number; as will be evident to any one who reduc: it into a regular syllogism. I shall oniy add, tha: when Euclid has thus determined the species of any lisure, he is then, and not before, at libery to ascribe to it all the properties already demonstrated of that figure, and thereby render it subservient to the future course of his reasoning.
Sec. VII.-Fixed and invariable Idcizs, with a steady atytlication of Names, renders this jart of Knowledge both oasy and cortain.
Having thus sufficiently explained the rules by which we are to conduct ourselves, in ranking particular objects under general ideas, and show their conformity to the practice and manner of the mathematicians; it remains only to observe, that the true way of rendering this part of knowledge both easy
aad certain, is, by habituating ourselves to clear and deternaum inkes, and keeping them steadily annexed to their respective names. For as all our aim is, to aiply encal words aright, if these words stand for invarible indeas, that are perfectly known to the mimi, and can be readily distinguished upon occasion, time will be little danger of mistake or error in our reaconins. Let us suppose, that by examining any mbject, ad carrying our attention successively from rine part to amilic:, we have acquainted oursetios wiat the sereal particulars observable in it. If among theos wed seoh as constitufe some general iea, framed and settled beforehand by the understanding and cisumpisted by a particular name ; the resemblace, tins kinswn and perceived, necessarily determines the species of the object, and thereby gives it a ri, tit to the name by which that species is called. Theis, four equal sides, joined together at right angles, meke up the notion of a square. As tins is a fised ard invariable idea, without which the general nane cannot be applied, we never call any particuiar figure a : "ure, until it appears to have these seiend r.mitions; and contrarily, wherever a figure is found with these conditions, it necessarily talkes the name of a :acce. The same will be found to hold in all our cher rawonires of this kind; where nothing can ereat: any diculty but the wat of settled alaz..If, for instance, we have not determined witine ourselves, the praise motion denoted by the word manslausher, it an le inspossible for us to decide, whether any puticu't, action ought to bear that name: Eccaus:, howevir nicely we examine the action itsclf, y't being stran,jus 9 the general idea with which it is to be coniputed, we are utterly unable to judge of iteir agrement or tisagreement. But if we take care to ramow this obadacle, and distinctly trace the
two ideas under consideration, all difficulties vanish, and the resolution becomes both easy and certain.

Scc. VIII.-By such a Conduct, Certainty and Demonstration misht be intruduced invo other Parts of Kiowe'elre as well as Mathematics.

Thus wesee cf what importance it is, towards the imprownest and certainty of human knowledge, that we accustom ourselues to clear and determinate ideas, and a steaciy aprolication of words. Nov is this so easy a task as some may, perhaps, be apt to imagine; it requinine both a conoprehensive understanding, and :-ut command of atiention, to settle the precise bemel of our iscas, when they grow to be very comphex, and inctude: a multitude of particulars. Nia, and after these limit; are duly fixed, there is a certain qu.. tin: s., of tiwn, iti and cxtent of mind required towatis bucpine tiae several parts in view, that in
 was he we lex.e.t. iet oresht not these difficulties (1) discontrage us ; thonecin \&rat, they are not unsurmomnable, and tice anabtuges arising fion success vill anily recompene our toil. The certainty and
 trowins; to lise cate observance of this rule. And I an a! to inasine, that if we were to employ the sante care alutit ati our other id.ai, as mathemati-
 tul., by fomine wom ine, exact cembinations, and dishiu; tinhinstine ermmishations by particular names, ia ostor to hecp thons steaiy and invariable ; we wosid soon have it in our poiver to introduce certainty and dewomstiathen into other parts of human hiusuledec.

CHAP. III.

OF REASONING AS IT REGARDS THE POWERS AND PROPERTIES OF THINGS, AN:D THE RELATIONS OF OUR GENERAL IDEAS.

Sec. I.—The Distinction of Reasonings as it regards the Sciences, and as it concerns common Life.

We come now to the second great end which men have in view in their reasonings, namely, the discovering and ascribing to things their several attributes and properties. And here it will be necessary to distinguish between reasoning, as it regards the scil ences, and as it concerns common life. In the sciences, our reason is emplored chiefly about universatruths, it being by them aione that the bounds of human knowledge are enlarged. Hence the division of things, into various classes. called otherwise genera and species. For these iniversal ideas, being set up as the represertatives of many particular things, whatever is affirmed of them, may also be affirmed of all the individuals to which they beiong. Murder, for instance, is a general idea, representing a certain species of human actions. Reason tells us, that the punishment due to it is death. Hence every particular action coming under the notion of murder, has the punishment of death allotted to it. Here then we apply the general truth to some obvious instance, and this is what properly constitutes the reasoning of common life. For men in their ordinary transactions and intercourse one with another, have for the most part to do only wili particular objects. Our friends and relations, their characters and behaviours, the constitution of the sereral bodies that surround us, and the μ ses to which they may be applied, are what
chiefly engage our attention. In all these we reason about paricular things; and the whole result of our reasonuts is, the arplying the eccricral truths of the sriences to the ortmary transactions of human life. When we see a viper, we ayoid it. Wherever we hare occasion for the frecinle action of water, to move a body that makes consicrable resistence, we take care to convey it in such a manner, that it shall fall upon the object with impetuosity. Now all this happers, in consequence of our familiar and ready applicution of these two general truths: the bite of a vifher is montal: sater.falluas on a body with impt tuositen acts wiry forcibly towards setting it in motion. In like manner, if we set ourselves to consider any particular character, in order to determine the share of praise or dispraise that belongs to it , our great concern is, to ascertain cxavily the proportion of virtue and vice.'I ine reason is obviosis. A just determination, in all cases of this kind, depends entirely upon an application of these maxims of movality: virtuous actions dr'serve /iruise: vicious actions deserve blane.

Sec. II.—The Stefle by which ave froceed in the Reasoning "f common Life.

Hence it appears, that reasonins, as it regards common life, is no more than the ascribing the general propertic: of things to those several objects with whin he are imntediately concerned, according as the; a.c fount t! ex of that particular division or class is whic! the properties belones. The steps, then, by which we procect, are manifestly these: linish we refer the object under considetation to some general idea or class of laings. We then recollect the sevcial attributes of tlut general idea; and, lastly, asribe all iloose attributes to the present object. Thus i.. roasicuins the charactur of $S c m / r o n i u s$, if we find
it to be of the kind called virtuous; when we at the same time reflect, that a virtuous character is deserving of esteem, it naturally and obviously follows, that Semphonius is so too. These thoughts put into a SulInsism, in order to exhibit the form of reasoning here required, runs thus :

Every virtuols man is worthy of estcem.
Sempronius is a swatus meat:
Therefore Semporis is werny of cstem.
Sec. III. The Comerrion and bremblace of the two grand Branches of ileusoning one uton another.
By this sthlogism it appears, that before we afirm any thing of a particular object, that object nust be referred to some general idea. Semtronius is proe nounced worthy of esteen, ony in conseruence of his being a virtuous mati, or coming under that general notion. Hence we see the necessary connexion of the various parts of reaicaing, and the dependence they have one upon auctier. The determining the genera and species of things is, as we hive said, one exercise of human reason; and here we find that this exercise is the first in order, and previous to the cther, which consists in ascribing to them their powns, properties, and relaticas. But when we have taken this previous step, and brought particular objects under general names; as the properties we ascribe to them are no other than those of the general idea, it is plain, that in order to a saccessful progress in this part of knowledge, we must thoroughiy acitaint girselves with the seviral relations and attributes of these our general ideas. When this is done, the other part will be easy, and require scarce any labour of thought, as being ne more then an appilicution of the general form of reasoning represented in the ioregring syllogism. Now, as we have already suficienty showa,
how we are to proceed in determining the senera and species of things, which, as we have said, is the previous step to this second branch of human hnowledge; all that is farther wanting to a due explanatis? of it is, to offer some considerations, as to the manere of investigating the general relations of our ideas. This is the highest exercise of the powers of the understarding, and that by means whercof, we arrive at the discovery of universal truths; basmen thet our deductions in this way, constitute that paticular secies of reasoning which, we have before said, regards prinripuilly the sciences.
Scc. IV.-Tyoo things required to matre a good Reas. oner.

But that we may conduct our thoughts widh some order and method, we shall begin with observing, that the relations of our general ideas are of two kinds. Dither such as immediaiely discover themseives, t:pon comparing the ideas one with another; or such, as being more remote and distant, require art and contrivance to bring them into view. The reiations of The first kind, furnish us with intuitive and selfevident uutiss: those of the second are traced by reasoning, and a due applicion of intermediate ideas. It is of this last kind thai ke ave to speak here, having dispatched what was necessary with regard to the other in the second part. As therefore, in tracing the more disiant relations of things, we must always have recourge to intervening ideas, and are more or less successful in our rescarches, according to our acquaintance with these ideas, and ability of applying them : it is evident, that to make a good reasoner, two things are principally required. First, an extensive knowlchre of those intermediate ideas by means of which thines may be compared one with another. Sicont.
ly, the skill and talent of applying them happily, in all particular instances that come under consideration.
Sec. V.-First, an extensive Knowledge of intermediate Ideas.

First, I say, that in order to our successful progress in reasoning, we must have an extensive knowiedge of those intermediateideas by means of which things moy be compared one with another. For as it is not cuey ided that will answer the purpose of our encuibics, but such cu!y as are pocuiarly related to the objerts about which we rease?, so as by a comparison i.ith then, to furmisi evident and known truths; nothins is more appareat, than that the greater variety of conceptions we cin call into view, the more likely we are to find some among them that will help us to the truths here required. And indeed it is found to hold in cupericnce, that in proportion as we enlarge our, riew of things, and grow acquainted with a multitude of dififerent objects, the reasoning quabey gathers strensth. For by extencing cursphere of knowledge, the mind acpuires a certain force and penetration, as beine accustomed to eranme the sereral appearances of its icats, and observe what light they cast one upon another.
Sec. VI.-To excel in any bne Eranch of Learning, que mas: is general be ac'udinted with the whole circt of A't:s and Sciencti.
And this i tale to be the reason, that in order to exect remarkably in any eac branch of learaing, it is necessary to have at leastergeral acomantance with the whole cirche of arts and sciences. The truth of it is, all the rarious divisions of human knowledge are ve? Wenty m lote? among themselves, and innumeradic instines serve to ihtuerete and set off each cih-
er. And although it is not to be cinicd, that by an obstinate application to one branch of stuth, a man may make considerable progress, and acquire some degree of eminence in it; yet his views will be ainay narrow and contracted, andile will want that mancely discernment which not only erables us to pursue our discoveries with ease, but also in laying them open to others, to spread a certain brightness around thene. I would not, however, here be understood to mean, that a general knowledge alone is sufficient for all tie purposes of reasoning. I only recommend it as proper to give the mind a certain sagacity and cuickue: $\%$, and qualify it for judging aright in the onthary ocourrences of life. But when our reasonas: repruids a particular seicnce, it is farther necesary, tien vie more nearly acquain ourselves with whaicer roites on that science. A genomal knowicdise is a sood pios paraitio, atdenables us to proced with case cade - . pedita in whatever beanch of !aming we aphe to. But then in the minnte and intricate citestions of an, seicuce, we are by no means radifice to exsen wat adivant. se, until we have perte ly maturd tice se, cwe to which they belows; it beime hetee chatly that we are furnished with those intermediate idess, which lead to a just and successlul spition.
Sec. VII.—HÏy, Muthematicians sometimes answer nor the explectation their grat leamings ruises.
And !ere, as it comes so naturally in my way, I comot aveid tating batice of on observation that is freduently to be met with, and seems to carry in it at fi st sight somethine very strange and unaccountable. It is, in short, this, that mathematicians, even such as are allowed to exced in their own protession, and to have discovered themselves perfect mons in the att of reasoning, have not yet bech alwiys happ., in treat -
ing upon other subjects ; but rather fallen short, not only what might naturally have been expected from them, but of many writers much less exercised in the rules of the argumentation. This will not appear su very extraordinary, if we reflect on what has been hinted above. Mathematics is an engaging study : and men who apply themselves that way, so wholly plunge into it, that they are for the most but little acguainted with cther branches of knowledge. When, therefore, they quit their favorite subject, and enter upon others, that are in a manner new and strange to them, no wonder if they find their iavention at a stand. Eecuise, however perfect they may be in the art of reasching, yct wanting here those intermediate ideas which are necessary to furnish out a due train of propositions, all their skill and ability fails them. For a bare knowledge of the rules is not sufficient. We must farther have materials whereunto to apply them. And when these are cnce obtained, then it is that an able reasoner discovers his superiority, by the just chacice he makes, and a certain masterly disposition, that in every step of the procedure camies evidence arde conviction aros with it. And hence it is, that such mataenaticians as have of late years applied themseives to otier sciences, and not contented with a supcitich howledge, endeavoured to reach their imact roceses ; such matheriaticians, I say, have, ty mee stangth of mind, and a happy application of
 be. Gid what anheretofore judged the utmost limits w' humen bowledge. Tins is a truth abundantly Lia, \because a to all who are acruainted with the late woidenfengoverents in natural phoscphy.

See. VIII.-Secondly, the Skill of athlying Intermediate Ideas hafthily in harticular instances.

I come now to the second thing required, in order to a successful progress in reasoning, namely, the skill and talent of applying intermediate ideas happily in all particular instances that come under consideration. And here I shall not take up much time in laying down rules and precepts, because I am apt to think they would do but little service. Use and exercise are the best instructors in the present case: and whatever logicians may boast, of being able to form perfect reasoners by book and rule, yet we find by experience, that the study of their precepts does not always add any great degree of strength to the understanding. In short, 'tis the habit alone of reasoning that makes a reasoner. And therefore the true way to acquire this talent, is, by being much conversant in those sciences where the art of reasoning is. allowed to reign in the greatest perfection. Hence it was, that the ancients, who so well undersivod the manner of forming the mind, always beg:an with mathematics as the foundation of theje philosophical studies. Here the understanding: is ${ }^{1} y$ degrees babituated to truth, contracts insensibly a certain fondness: for it, and learns never to yich its assient to any promosition, but where the evidence is sufficient to produce full ccavicticn. For this reason Pla\% has called mathematical demonstrations the cathartics or purgativee of the suth, as being the proper means to cianse it fiom error, and restore that natural exerci, , of :ts faculties in which just thinking consists. And i:.aced I belicese it will be readily allowed, that no science firmighes so many instances of a happy cheice a intermonible ideas, and a des.rous application of them, for the chiscowry of tiveh and ciancgement of knowledge.

Sec. IX.-The Study of Rathematical Demonstrations of great arail in this reshect.

If, therefore, we would form our minds to a habit of reasoning closely and in train, we cannot take any more certain method, than the exercising ourscives in mathematicai demonstrations, so as to contract a kind of familiarity with them ; "not that we look upon it as nccessaty, (to use the words af the great Mr. Locke) that all.men should be deep mathematicians, but that, having got the way of reasoning which that study necessarijy brinss the mind to, they may be able to transfer it to other parts of knowledge, as they shall have occasion. For in all sorts of reasoning every single argument should be managed as a mathematical demonstration, the connexion end dependence of ideas should be followed, till the mind is brought to the source on which it bottoms, and can trace the coherence through the whole train of proofs. It is in the general observable, that the facultics of our souls are improved and made useful to us just arter the same manner as our bodies are. Would you have a man write or paint, dance or fence well, oi perform any other manual operation, dextrously and with ease? Let him have ever so much vigour and activity, suppleness and address naturally, yet no body expects this from him, unless he has been used to it, and has employed time and pains in fashioning and forming his hand, or outward parts to these motions. Just so it is in the mind; would you hare a man reason well, you must use him to it betimes, exercise his mind in observing the connexion of ideas, and following them in train. Nothing does this better than mathematics; wiich, therefore, I think should be tanght all those who have the time and oppertunity, not so much to make them mathematicians, as to make them reasonable creatures; for though we all call
curselves so, because we are born to it, if we please; yet we may truly say, nature gives us but the seeds of it. We are born to be, if we rlease, rational creatures; but tis :se and exercise oniy that makes us so, and we are indecd so, no farther than industry and application has carried us." Cenduct of the Understanding.
Sec. X.-As alin of such Aithors on other Subjects, as ary distinguished for Strensith and Justness of Reasons.
L.:i although the sitidy of mathematics be, of all others, the most useful to form the mind and give it an early relish of truth, yot ourht not other parts of piilusophy to be neglected. For ticre also we meet with many opportunities of excrcising the powers of the understanding ; and the varicty of subjects naturally lead us to observe all those different turns of thinking that are peculiarly adapted to the several ideas we examine, and the truths we search after.A mind thus trained, acquires a certian mastery over its own thoughts, insomuch that it can range and model them at pleasure, and call such into view as best suit it's present designs. Now in this the whole art of reasoning consists, from among a great variety of different ideas, to single out those that are most proper for the business in hand, and to lay them together in such order, that from phain and easy leginnins, by guatle degrees, and a continual train of exident treths, we may be insensibly led on to such discolerics, as at our first setting out, appeared beyond the reach of the human understanding. For this purfose, besides the study of matlematics before recominended, we ought to apply ourselves diliseatis to the Datling of such authors as have distingushed themselves iou strength of reasoning, and a just and accur.te manuer of thinking. For it is cosericeible. that
a mind exercised and seasoned to truth seldom rests satisfied in a bare contemplation of the arguments offered by others, but will be frequently essaying its own strength, and pursuing its discoveries upon the plan it is most accustomed to. Thus we insensibly contract a habit of tracing truth from one stage to another, and of investigating those general relaticns and properties which we afterwards ascribe to particular things, according as we find them comprehendid:mder the abstract ideas to which the properties beiong. And thus having particularly shown how we are to distribute the several objects of nature under general ideas, what properties we are to ascribe to them in consequence of that distribution, and how to trace and investigate the properties themselves; I think I have sufficiently explained all that is necessary fowards a due conception of reasoning, and shall therefors here conclude this chapter.

CHAP. IV.

OF THE FORMS OF SYLLOGISMS.
Sec. I.—The Figures of Syllogisms.

Hitherto we have contented ourselves with a general notion of syllogisms, and of the parts of which they consist. It is now time to enter a little more particularly into the subject, to examine their various forms, and to lay open the rules of argumentation proper to each. In the syllogisms mantioned in the ioregoing chapters, we may observe, that the middle term is the subject of the major proposition, and the predicate of the minor. This disposition, though the most natural and obvious, is not, howe:er, necessary;
it frequently happening that the middle tcrm is the subject in both the premises, or the predicate in both ; and sometimes, directly contrary to its disposition in the foregoing chapters, the predicate in the major, and the subject in the minor. Hence the distinction of syllogisms into various kinds, called figures by logicians. lor figure, according to their use of the word, is noth, ing else but the order and disposition of the middie lerm in any syllegism. And as this disposition is, we see, four-fold, so the firures c.f syllogisms thence arising are four in number. When the middle term is the subject of the major proposition, and the predicate of the minor, we have what is caliced the first fisure. If on the other hand, it is the 1 ir dicate of both the premises, the syllogism is said to be in the second figure. Again, in the third.fisurc, the middle term is the subject of the two premises. And lastily, by making it the predicate of the major, and subject of the minor, we obtinin syllogisms in the fiunth fisure.

Scc. II.—The Moods of Sullturionins.
But besides this four-fold distinction of syllogisms, there is also a farther subdivision of them in creer; fisure, arising from the yuantity and qualify, as they are called, of the propositions. By gauntity we mean the comsideration of propositions as universal or particular, by guality as affirmative or neyative. Now as in all the several dispositions of the middle term, the propositions, of which a syllogism consists, may be either universal or particular, affirmative or negative; the due determination of these, and so putting them together as the laws of argumentation reguire, constitute what loricians call the moods of syllogisms.Of these mools there are a determintate number to cuery tgure, inclucting all the possible ways in which propositions difiering in quantity or quality can be
combined, according to any disposition of the middle term, in order to arrive at a just conclusion. The shortness of the present work will not allow of entering into a more particular description of these several distinctions and divisions. I shall therefore content myself with referring the reader to the Port Royal art of thinking, where he will find the moods and figures of syliogisms distinctly explained, and the rules propor to each very neatly demonstrated.

Sec. III.-Fousda'ion of the other Divisions of Syllogisms.

The division of syllogisms, according to mood and figure, resnects those especially, which are known by the name of plain simple syllogisms; that is, which are bounded to three propositions, all simple, and where the extremes and middle term are connected, according to the rules laid down above. But as the mind is not tied down to any one precise form of reasoning, but sometimes makes use of more, sometimes of fewtr premises, and often takes in compound and conditional propositions, it may not be amiss to take notice of the different forms derived from this source, and explain the rules by which the mind conducts itself in the use of them.

Sec. IV.—Conditional Syllogisms.

When in any syllogism, the mojor is a conditional proposition, the syllogism itself is termed conditional. Thus:

If there is a God, he ought to be worshipped.
But there is a God:
'Therefore he ought to be worshipped.
In this example, the major or first proposition, is, Ye see, conditional, and therefore the syllogism itself is also of the kind called by that name. And here we
are to observe, that all conditional propositions a:c made up of two distinct parts; one expressing the condition upon which the predicate agrees on disagrees with the subject, as in this now before $u s$, if there is a God; the other joining or disjoining the said predicate and subject, as here, he ought to bc avcrshinhed. The first of these parts, or that which implies the condition, is called the antecedent; the secoind, where we join or disjoin the predicate and sulbjeri, has the name of the consequent.
Sec. V.-Ground of Illation in conditional Syllogisms.
These things explained, we are farther to observe, that in all propositions of this kind, supposing them to be exact in point of form, the relition between the antecedent and consequent, must ever be true and real ; that is, the antecedent must always comuin sone certain or genuine condition which necessurity implies the consequent ; lor otherwise, the propositim, itself will be false, and therefore ought not to be actmitted into our reasonings. Ience it followe, that when any conditional proposition is assomed, if we admit the antecedent of that proposition, we must, at the same time, necessarily admit the ronserquent: but if we reject the consecpent, we are, in like manner, bound to reject also the antecedent. For as the antecedent always expresses some condition which necemarily implies the truth of the consequent; by admitting the antecedent, we allow of that condition, and therefore ought also to admit the consequent. In like manner, if it appears that the consequent ought to be rejectud, the antecedent evidently must be so too ; because, as we just now demonstrated, the admitting of ther intecedent would necessarily imply the admission also of the consequent.

Sec. VI.—The two Moods of Conditional Syllogism.

From what has been said, it appears, that there are two ways of arguing in hypothetical syllogism, which lead to a certain and unavoidable conclusion. For as the major is always a conditional proposition, consisting of an antecedent and a consequent; if the minor admits the antecedent, it is plain, that the conclusion must admit the consequent. This is called arguing from the admission of the antecedent to the admission oi the consequent, and constitutes that mood or specis of hyfotheticul syllogisms, which is distinguished in the schools by the name of the modus honens, inasmuch as by it the whole conditional proposition, both antecedent and consequent, is establishecl. Thus,

If God is infinitely wise, and acts with perfect freedom, he dres nothing but what is best.
But God is infiniely wise, and acts with perfect freedom :
Therefore he does nothing but what is best.
Here we see the antecedent or first part of the conditional proposition is established in the wint, and the consequent or second part in the conclusion; fithence the syliogism itself is an example of the modus fionere. But if now we on the contrary suppose, that the minor rejects the consequent, then it is apparent, that the conclusion must also reject the antecedent. In this case we are said to argue from the remoial of the colizquent, to the removal of the antecedent; and the fatictilai mood or species of syllorism thence arising is called by lositians the modus coll-ns; because in it, both antececient and consequent are rejected or titen away, as appears by the following exampit:
If $\mathrm{G} \times \mathrm{l}$ were not a Eeing of infinite goodness, neither would be cionsult tiat hit:puless or his crea ures.

But God dees :ansult the hapdiness of his creatures:

Sec. VII.—They include all the Legitimate Ways of Arguing.
These two species take in the whole class of conditional syllogisms, and include all the possible ways of arguing that lead to a legitimate conclusion ; because we cannot here proceed by a contrary process of reasoning, that is, trom the removal of the antecedent to the removal of the consequent, or from the establishing of the consequent to the establishing of the antecedent. For although the antecedent always toperess seme real condition, which, ence arlmitted, wecessarily immste the consequent, y ct it does not folfow, that there is therefore no other comitition ; and if :/, then, after rmwsing the antecedent, the consephent may still hold, because of some chiter determination thet infers it. When we say: If a stone is trimend weme time to the reys: of the wan, it aill contract a certuin derere of hat ; the propsition is certainly true, and, atmitime the antecedn', we mest also admit the conscifulat. But as there are other ways by which a stone: may sather heat, it will not follow from tie ceasings , if the before-mentioned condition, that therefore tice conserutut camot take place. In othof words, we cannot argue, but the stone has not been.
 an! orep: f hert ; inesmuch as there are atoat many onfer w:ys by which heat misht have been Chmaniatel to it. Sid if we caumbtargue from alie remesal of the antecedent to the iemoral of the coneequat, no anar cen we from the admission of tae conserpeta to ade admission of the antecedent. Berane, as the consempem way from a fromat
 doss nut checmmene the pecise shplevition, but only that some of them mist take jhaci. llus in the

to the rays of the sun, it will contract a certain degree of heat : admitting the consequent, viz. that it has contracted a certain desree of heut, we are not therefore bound to admit the antecedent, that it has been some time exposed to ti: rays of the sum; because there are many other causes whence that heat may have proceeded. These two ways of arguing, therefore, hold not in conditional syllogisns. Indeeci, where ihe antecedent expresses the only condition on which the consequent takes place, there they may be applied with safety ; lccause, wherver that condition is not, We are sure that neither can the consequent be, and so may arzue from the removal of the one to the removal of the other; as, on the contary, wherever the conseruent lirles, it is certain that the condition must also taine place ; which shuirs, that by establishing the conseguent, we at the same time establish the antecedent. But as it is a very parsicular cane, and that happus is!et selcien, it cannot be extended into a rereral ruie, and therefore affords no: any steady and universal glound of reasoning upon the two forego ing suppositions.
Sec. VIII.-Tice Nanner of Arguing in Disjunctive sillogismr.
As from the mrijors being a conclitional proposition, we obtain the species of conditional sellogisms; so Where it is a disjunctive; moprition, the syllogism, to which it belongs, is called disjunctive, as in the following example:

The world is either self-existent, or the west of some finite or of sume infinite bems.

But it in not self-existent, nor the work of a finite being :
Therefore it is the work of an infinite being.
Now a disjunctive proposition is that where of sereral predicates we afirm one necessarily to belong to
the subject, to the exclusion of all the rest, but leave that particular one undetermined. Hence it follows, that as soon as we dctermine the particular predicate, inl the rest are of course to be rejected ; or if we reject all the predicates but one, that one necessarily takes place. Winn, therefore, in a disjunctive syllogism, the several reciicates are eminiorated in the major-if the mizor atin! ! es any one of these predicates, tiec ew hisim ourght to remove all the rest ; or if, in the minor, all the pr dicates !at one are removed, the conchurion must incessarily estainish that one. Thus in the "isjunc a'e syl'ging given above, the major affirms one of thace perlicates to belong to the carth, viz. s! !/f-r in wore, or that it is the work of a finier, or that it is the raurk of mimetnite being. Two of these preduates dic removed in the minur, viz. selfexistence, and the werth of a finite beins. ! lence the conclusion necessarily ascribes to it the thi!el predicate, and allirms, that it is the: kof an infinite being. If now we give the syllogism another turn, insomuch that the minor may establish mes of the predicates, by affirming the earth to be the /retuction of an ir.finite being-then the conclusion must remove the oher two, asserting it tw be neither seffeciotm, nor the ary, $\%$ of a finite being. These are the furms of reasoniter in this spectics of syllogisms, the juntous of whin appears at first sight and that there can be no other, is coident from the very nature of a disuactive proposition.
Scc. IS-Inthrfict or mutilated Syllugisms.

In the several kinds of syllogisms hitherto mentionecl, we may diserve, that the parts are complete; that is, the three propositions of which they consist are represented in form. But it often himpurn, that sene one of the promisis is nui obly an cricuat truth,

Sec. XI.-Ground of Rasoning in immediate Consoquences.

But there is another species of reascnims with two propositions, which seems to be complete in itself, and where wo admit the conclusion, without supposing any tacit or si:ppressed judgment in the aind, from whin, it follows seigristically. This happens betwecu proprsitions where the comacxion is; suth, that the acimiximof the one, necesariy, and at the first sim, implies the arimision alss of the oticer. Sos if it sn Falls ont, that the proposition, ,in whol to other depends, is self-cridua, we conte:tonseives with mo.. ly affrming it, and infer that other a direct come sion. Thins, by admitting an mincon paposition, we are fered also to admitef ali the pricicniar props-
 condition that coassitutes a porpowion universal. If then that universal promestion chames to be seliewideat, tie particatar ones follow of course, without any farther train of reasonimg. Whas ber allows, for in-
 pyhat to one ansther, what at the same time allow, that tion triunsles, each equal to a ssinure, whose side is tirre inches, ar" also equal betzocen themselves. This argument thereiore,
Thinigs equal to one and the same thing, are equal to one ansther;

Therefore those two triangles, each cqual to the square of a line of three inches, are equal between themselves.
is comple: in its ithel, and contains all thet is necessayy tewards a just and legritimate conclusion. For thic first or universal proposition is self-evident, and the refore requires no farther proof. And as the truth ni the pa:ticular is inseparably connected with that of the taiversal, it follows from it by an obvious and unavoidable consequence.

Sec. XII.—.All reducible to Sullagisms of some one form or other.
Now in all cases of this kind where propositions are deduced one from anciicer, on account of a known and erident connexion, we are said to reason by immediate consciuchar. Such a coherence of propositions, manifest at first sight, ind forcing itself upon the inind, frequanty occurs in reasoning. Logicians have explained at some length, the sereral suppositions upon which it takes phect and allow of all immediate conerquences that follow in conformity to them. It is, however, observable, that these arguments, though secmingly complete, because the conclusion follows necessacily from the single proposition that goes before, may yet be considered as real onthymemes, whose a. j, p, which is a conditional proposition, is wanting. The sidhogism but just mentioned, when represented accouling to this view, will rua as fillows:

If things equal to $o \mathrm{e}$ and the same thing are equal to one anoher; these two triangles, each equal to a square whose sile is three inches, are alss equal beween themselves.

But things equal to one and the same thing, are equal to one another:

Thercfure also these triangles, \&c. are equal between themselves.

This observation will be found to hold in all immeditie consequences whatsoever, insomuch that they are in fact no more than enthymemes of hypothetical syllogisms. But then it is inticular to them, that the ground, on which the conclusion rests, namely, its coherence with the minor, is of itself apparent, and seen immediately to flow from the rules and reasons of logic. As it is, therefore, entirely unnecessary to express a se!f-erictint comnexion, the major, whose offce that is, is constantly omitted; nay, and seems so very litule needful to enforce the conclusion,
as to be accounted commonly no part of the argument at all. It must indeed be owned, that the foregoin; immediate consequence might have been reviuad ${ }^{\circ}$, a simple, as well as an hypothetical syllogism. T! will be evident to any one wiug gives himseli ti.: trouble to male the experinacit. Dut it is not my design to enter farther into these bitectics, what ins been said suliacing to show, that :ll arcuments cer.sisting of but twoprowitions, are wal entiomenco, and reducible to complate syllogisms of son:e on: form or other. As, therefore, the growned on whic! the conclusion rests, must needs be alvays the same with that of the syllogisms to which they belong, we have here an universal cricurn, whors at a! tams to ascertain the justaco and validity on om reabuar, in this way.

The next species of icmoming we s! ath take mete of here, is what is commonly known lis the nume e. a sorilcs. This is a way ofarguins, in whichag"t: number of propertions are so linhal tergether, that the pralicut of ane beomes comanally the subje t of ti.e next followine, metil at last a conclusion is formed, by beinging tupather the subject of the first propestion and dice predicate of the last. Of a is kind is the foliseming arganent:

Gud is mimif.
An ornniposeut being can do every thing pos sithe.
He tha can du every thing possiol , can du whatorer invet. mot a con raicoion.

Tiis partimade combiamion of proputions may be continued to any lasoth we dubse, withont in the
 sion exsis. Tha reasud is, becusc the sontes iteelf
may be resolved into as many simple syllogisms as there are middie terms in it; where this is found udiversai!y to reld, that when such a resolution is nude, and the syllogisms are placed in train, the conclusion of the last in the series is also the conclusica of the soritics. This kind of argument, therefore, as it serves to u..ie several syicsisms into one, mest stand upen the sume foundation with the syllocitmes on which it consists ; and is, induch, properly spatits, no other than a compendious way of reasoning: syluystically. finy one may be satisfied of this at p.custire, if he bat takes the trouble of resolvinco the torceons suriter iato two distinct syllogisms. Lor he wili there find, that he arrises at the same cachesion, and that, too, by the very same train of thimhing, but with abundantly more words, and the a'citicia of two superfuous propositions.

Sec. XIV.—. I Sorites of Hyhthetical Syllogisms.

What is here said of plain simple propositions, may be well applied to those that are conditional ; that is, ary number of them may be so joined together in a selies, that the consequest of one, shall become contioually the antecedent of the next following; in which case, by estainishing the antecedent of the first propcsition, we cstabish the consequent of the last, or by \therefore nowing the last consequent, remove also the first antecoleat. This way of reasoning is exemplined in the ecliowng argument:

Il we love any person, all emotions of hatred towards him ctase.
if all empotions ne hatred towards a person cease, we cannot rejuce in his matoruales.
If we rejoce urt in his misfortui:es, we certainly wish him no initus.

Thentiore if we lave a person, we wish him no ixjury.

It is evident that this sorites, as well as the last, may be resoived into a series of distinct syllogisms, with this only difference, that here the syllogisms are all conditional. Lut as the conclusion of the last sylicgism in the series is the same with the conclusion of the errites, it is plain, that this also is a compendious way of reasoning, whose evidence arises from the eviduice of the several single syllogisms into which it may be resolved.
Sce. XV.—The Ground of Reasoning by Induction.
I come now to that kind of argument, which logicians call induction; in order to the right understanding of which, it will be necessary to obselve, that our general ideas aie for the most part capable of various subdivisions. 'Thess the idea of the lowest species ney be subdivided into its sereral individuals; the idea ol any , prehends; tion so of the rest. If then we suppose this distribution to be duly mande, and so as to take in the whole extent of the idea to which it beloners; then it is plain, that ail the subdivisions or parts of any idea taisen tosiner constitute that whole ideaThus the several imiaiduats of any species taken together constitute tac whole species, and all the various species comprehended under any genus, make up the whole p,omas: This being allowed, it is apparent, tiat whatsotere may be affirmed of all the scremed subdivisions and classes of any idea, ought to be affirned of the whole gemeral idea to which these subdivisions belong. What may be affirmed of all the individuals of any species, may be affirmed of the whole species; and what may be aflirmed of all the species of any genus, maty also be athoned of the whole genus; because all tie individuals, tiken to rotion, are the same with the speri, 4 , and all the species talien togedier, the same wat ind sciais.

Sec. XVI.-The Form and Structure of an Argsinnt by Induction.

This way of arguing, where we infer universathy concerning any idea, what we had before affirmed or denied separately, of all its several subdivisions and paits, is cillet reasoning by induction. Thus if we suppose the whole teibe of animais, subdivided into men, beash, birds, insects, and fishes, and then reesen concernin' thit sifer this manner: sill man have a thawer of esinneyg motion; all becists, birds, and in:-
 a hover of bersiming motion; therefere all animals have a power of lestimisis mosion: Thee argument is an irduction. Winen the subdivisions are just, so as to take in the whole gencrel idea, and the cimmerution is purict, hat is, extends to a! anc. every of the ir. Elior choses or pais; there the induction is cen. piete, and the moner of rasoning by induction is ?parentiy conclusine.
 lemma.

Tas lest execes of sums I shall take notice of, in tieis chapter, is that commonly distinguished by the thane of a dionat. 1 dilmma is an argument by which we coderour to prove the absurdity or E.ls:bocd of some assertion. In order to this we assume a conditional prositon ; the antec dent of which is ti:e assertion to be disproved and the conser, wetita disum tive proposition, enumeratiof all the pasible s:mpositions upon which that ascerion con the piace. If then it mpuas, thet all these sernd sumpositors endit to be rejected, it is plain, that the unacedent, or assution, itscif, must ic so too. When, thesefore, sucha propotica as hat before mentonor, is made.
the major of any syin;ism-if th: minor rejects all the suppositions condand in the crowe pati, it ionhows necessuras, theat the collciusion onght to reject the antecedut, whol, as we J.uic suid, is the tory assertion to be disproved. ihis purctubar way of arguing, is that which legriciats cati a di, \%ma; and from the account here sivel of it, it allears, that we may in general define it to be an hathoth ticaterthogiam, where the consernuent of the major is a disjunctive jurafosiaion, we:li:t is whislly taich añog or removed in the miner. Of this kind is the ichluritus:
If God did not create the worth f: ffer in it: kind, it must either proceal from want of inctinalim, or from want of power.
But it could wot proced either fom want of inclination, or from want : pow.

Tincriore he crated the word perfect in its hind. Or, which is the same thing: 'I's alsurl to say that he did not create the world provici in its hind.

$$
\text { Sec. XVIII.- In merersal } D_{1}, r i i_{2}^{\prime} \text { ine of it. }
$$

The nature then of a dilema is universolly this. The major is a ronclifional proposition, whose consefient contains all the severel suppositions upon which the anteccient can tabe phace. As, therebore, these suppositions are и holly remoswi in the minor, it is evident, that the antecedent must be so 200 ; insomach diat we here always argue from the romoval of the consequent to the removal of the ateredent. I liat is, a dilemma is an argmment, in the modus toll ns of hypothetical syllogisnis, as logicians love to speak. Hence it is plain, that if the antecedent of the major is an affirmative proposition, the conclusion of the dilenma will be negative; but if it be a nernative proposition, the conclusion will be aflirmative. I cannot ti'smiss the subject withon observing, that as there is something very curicus and eliteraining in the struc-
ture of a dilemmx, so is it a manner or reasoning that occurs frequentiy in mathematical demonstrations. Nothing is more common with Euclid, when abont to show the equality of two given figures, or, which is the same thims, to prove tire absurdity of asserting them unequai; nothing, I say, is more common vith him, than to assitme, that if the one is not equal to twe other, it must be cither srater orliss: and having destroyed both these suppositions, upon which alone the assertion can stand, he thence rery naturally infers, that the assertion itself is false. Now this is precisely the reasoning oi a dilcmac, and in every siep wincides with the firme and composition of that angument, as we have described it above.

CHAP. V.

OF DEMONSTRATION.
Sec. I.—Of Reasming by a Concatcnation of Syllogisms:
$H_{\text {aving }}$ dispatched what seemed necessary to be said with regaid to the forms of syllogisms, we now proceed to supply their use and application in reasoning. We have seen, that in all the different appearances they put on, we still arrive at a just and legitimate conclusion. Now it often happens, that the conclusion of one syliogism becomes a previous proposition in another, by which means great numbers of them are sometimes linked together in a series, and truths are made to follow one another in train. And as in such a concatenation of syllogisms, all the various ways of reasoning that are truly conclusive, may be with safety introduced; hence it is plain, that in deducing ain twuth from its first principles, especially
when it lies at a considerable distance fon thens; we are at liberty to combine all the sevenal linds of arguments above explained, according as tisy are fond best to suit the end and puipose of wir andibice. When a proposition is thus, by meins ot syorisme, collected from others more cirlunt and haown, it is said to be iroved; so that we may in the general define the proof of a firupsition, to lee a syllogism, or strics of syllogisms, collecting thai proposition from known and evident truths. But more particulaty, if the syllogisms, of wac'a the prooí consists, admit ol no premises but definitiny, seli-evident ruths, and propositions already csteinishect, tien is ticatgumeat so constituted called a demmistrution ; wheriy it appears, that demonstrations are ultimately isuncted on definitions and sell-wident piopositions.
 firet ígier:.
But as a demonstation oftemer consists of a lons chain of proces, whe all the varions wats of arguing have place, and wher the sround of cricerce must of course be difionent in different purts, agerably to the form of the arstiannt mache use of ; it may not perhaps be warcentable, il we here endeavour to reduce the cridence of demonst ation to one simple principle, whence, as a sure and mialterable foundation, the certainty of it may in all cases lee derived. In order to this we must first observe, that all syllogisms whatsocrer, whether compound, muliiform, or defective, are reducible to plain simple $\because 1$ logisms in some one of the four figures. But inis is not all. Syllogisms of the first fir, lar admit of all possible conclusions: that is, any proposition whatsoever, whethor an universal affirmative, or universal negrative, a particular affirmative or
particular negative, (which four-fold division, as we have alreally demonstrated in the second part, embraces all their varieties) any one, I say, of these may be inferred, by vittie of some syllogism in the first forwe. By this means it happens, that the sylloreites of all the other finas are reducible alse to syilosisms of the first finere, and may be considered as standing on the same foundation witis them. Vive cannot here demonstrate and explain the manner of this; rerluction, because it would too much swell the bulk of this treatise. It is enough to take : otice, that the thing is universally known and allowed among ingicians, to whose writings we refer such as desire farther sutisfaction in this matter. This them being laid down. it is plain, that any demonstration whatsocrar may be considered as compozed of a series of syllosism, all in the first figure. For since all the sylogisms, that enter the demonstration, are reduced to syllegisms of some one of the four figures, and since the syllogisms of all the oher firmes are farthor reducible to sollogisms of the froi itgure, it is erident, that the whole demonstration may be resolved into a series of these last syliogisms. Lct us rom if possible, discover the ground upon whist; the conclusion rests, in syllosisms of the first i:rure ; because, by so doing, we shail come at an universal principle of certainty, whence the evidence of all demonstrations, in all their parts, may be ultimately derived.
Sec. III.—The grourd of Reasoning in the first Figure.
The rules then of the first figure are brieny these. The midule term is the subject of the major proposition, and the predicate of the mins. The major is diways an universal proposition, and the minor always a?Trmative. Let us now see what effect these rules will have in reasoning. The major is an universal
proposition, of which the middle trm is the subject, and the predicate of the conclusion the prerlicati. Hence it appears, that in the major, the forvicute of the conclusion is always affirmed or denied universally of the midtle term. Again, the minor is an aflimaitive proposition, wherecf the subject of the conclusion is the subject, and the midalle form the predicate. Here then the middle term is aftirmed of the subject of the conclusion: that is, the subject of the conclusion is affirmed to be comprehended under, or to make a part of the midcle term. Thus then we see what is done in the hremises of a syllogism of the first figure. The predicate of the ronchasion is universally affinated or denied of some idea. The athject of the conclusion is afinmed to be, or to make a pain of that itlea. Hence it natumaly and uravindably fe.ters, that the fredicate of the conclusion ought to be atimmed or dicnied of the subject. To illustate thin hy atherall ple, we shall resume one of the sylluyisus of the irst chapter :

Every creature, ponscsscu of redsun and liberte, is accountable for his actions.

Man is a creathe possessed of reasorn and liberty:
Therefore man is atcomtable lior his actions.
Here, in the first propesition, the peciacate of the

 propesition, wan, the smbiert of the comelusion, is affirmed tole, or to make a part of this ctass of creatures. Hente the conclusion necessaity and unavoidable follows, viz. that man is acou' atit for his actions. I say this follows but cosasily anci unaroidebly. Becanse, if leason and liberty lee that which constitutes a creature aceoaitaili, aisd men has reason and liberty, it is plain lie has that which constitutes him accountablc. In lile manner, vhere the major is
a negative proposition, or denies the predicate of the coacusion universally of the middle term; as the minor atways asserts the subject of the conclusion to be or make a part of that middle term, it is no less evident, that the fredicate of the conclusion ought in this case to be denied of the subject. So that the ground of reasonins, in all syllogisms of the first firy $1 e$, is natifestly this: Whatetio may be affirmed wizersallif of anilidea, may be affirmed cf every or any number of furticulars comptrehended under that iuct. And assain : IHatterter may be denied universally of any idec, may be in like manner denied of every or why nunber of ito incividuals. These two propositions are called by legicians the dicium di omni, and dictum de :int:, and are indeed the great principles of :yllogistic seasonins; inasmuch as all conclusions wiatsocter, either rest immediately upon them, or upon propositions deduced from them. But what ades greatly to their ratue is, that tiey are really selinewlont truths, and such as we cannot gainsay, withoti rumning into an express contradiction. To affirm, for histance, that nom ins is fiet, and yet argue that some men are fofet; or to say that will men are ins:ut, and yet Hisai some men are not mortal, is to assert a thing to be and not to be at the same time.
 and evicitaty.
And now I think we are stificenery ant'onized to a mm , that in alls: hogisms of the firs ficto, if the f "mises are tue, the conclusion must nects be true. If it be trele tiat the iroficute of the conchasen, whethor afinmatio or mogatie, ates unversily to some idea-an! it it be also tur, inat the andijut tite conclusion is a part of or comprehended under tiat idea; then it necessarily fonds, that the fretorte of the
conclusion agrees also to the subject. For to assert the contrary, would be to run counter to some one of the two principles before established ; that is, it would be to maintain an evident centradiction. And thus we are come at last to the point we have been ell along endeavouring to establish, namely, that every proposition, which can be demonstrated, is nccessariiy true. For as every demonstration may be resolved into a serics of syllogisms, all in the first firstre, and as in any one of these syllogisms, if the premices are irue, the conclusion must needs be so too: it cridently follows, that if :ill the screra! premises are true, all the several conclusions are so, and consenenty the conclusion also of the last syhorim, which is annes the proposition to be demonstrated. Now that all the premises oi a demonstration are tenc, wiil casiy appear, from the revy nathe and detmition of that form of reasomiais. A domastantion, as we hate sad, is a series of syhesima, all whos: premisw, are either definitions, self-vident truths, or prearitions alrealy: established. Definitions are indaieal propositions, wherein we connect the destription of an idea with the nome by which we choose to have that idea called; and tinereme as to their troth there can be we dispute. Sefferintat propesitions appear tace of thenseives, ard luan in, deabt or mertanty in the mind. Propositions lefore cetallished, are no other
 definitions and setfocdent principles; that is, fiom true premisen, and thatere nosal needs be treeWhence all the previous propsitions of a demonstration, bing, we see, memitily tue, tic bat conCluskm, or propension to be dincobstated, musi be
 tain truth, but we hate bere a clo.. vies of the grome and sometate of that eltast! I. as in demon-
strating, we may be said to do nothing mow llua combine a senies of syllogisms together, all restims on the same botiom ; it is plain, that one uniform ground of certainty runs theourh ohe whole, and that the conclusions are every where buit upon some one of the two principles before established, as the foundation of all our reasoning. These tio pinciples are easily reduced into cine, and may be e:apresocel thus:
 cgrees universally to any idea, the same must necde a srec to evert; or any number of indizidiat comprehended?eder that iciea. And thus at lenerth we have, ac-. mring to our first design, reduced the certainty of demonstration to one simple and miversal principle which carries its own evidance along with it, and which is, inded, the ultimate foundation of all syllogistic reasonies.
Scc. V.—Tin rulus of Logir finmiva a subicient criturion for the aininguinius betwern Truth and Palsehood.

Demonstwition, therefore, serving as an infallible suice to trutl, abd standing on so suaic and unaltorable a basis, we may now renture to assert, what I cloubt not wisl appear a pasacios to many, namely, that the ruies of iogic furnish a sufficient criterion for the distime, wisimer between truth and falsehood. Forsince craly forousition that can be demonstrated is iocessatily true, he is alle to distinguish truth from filscland, who can with certainty judige when a proposition is duly ciemonetrited. Now a demonstration is, as we huie sad, nothing more than a concatenation of syllogism, all whose prenises are definitions, selfwicut truths, or propositions previously established. To judge, therefoc, of the validity of a demonstrason, we musi be able to distinguish whether the deimusims that sixer it are genuine, and truly doscrip-
tive of the ideas they are mear to exhbit; whether the propesitions asomed without proof as intuitive tenths, have reaty that self-viduce to which they lay claim; whether th : seto gims are deam up in due form, and arreeable a the lows of arrumentation; in fine wiocher tioy ame combined tose ther, in a just and cerdety mander, so that no demonstrable propositions selve any where as premise , unless they are condurions of prowors sellomisnes. Now it is the buness of b, gic, in cxplamins the severa oprextons of the mincl, hilly to instruct us in all these puints. It teaches the nature and end of definitum, and lays down tie mules by which they wegle iw ox fanmed. It unfords the several species of proparimes, and ditimenimes the self-evident from the damonseble. It delineates also the diforent bens ot syllegines, and explains the las of arsumentation proper to each. In fine, it deseribes the manner of conaimines syllo!isms, soas that they may fion a train of masonine, and lead to the successive discovary of teath. The precepis of loge, thereme, as they main us to judge with certaiaty, when a proposition is duly demonstrated, furnish a stiac criterion for dista mishing between tenth and fulsehood.
 Fingethids of 'i'ruin is aituinabli.

But perhaps it may he injected, thet riemnomation is a thing very rare and wermono, is iccing the preroseative of but a few scioncos, and therefore the critution here given cat be of no gracat tise. I answer, that wherever by the wate contemplation of our ideas, truth is discoverable, therentso demecaswationay be obtained. Now that I think is an eh) un tue ty wifient criterion, which canales us to jurnw win certainty,

in our reach; for with discoveries that lie beyond the limits of the human mind, we have properly no busness nor conceimathi. When a proposition is demonstrated, we are certain of its truth. When. on the contrary, our ideas are such as have no visiile connexion nor repugname, and therefore furnish not the proper means of tracing their agreement or disagreement, there we are sure that knowledge, scientifical knowledse I mean, is not attainable. Hut where there is some foundation of reasoning, which yet amounts not to the full evidence of demonstration, there the precepts of lojic, by teaching us to determine aright of the degree of proof, and of what is still wanting to render it full and complete, cnable us to make a due estimate of the measures, of probability, and to proportion our essent to the grounds on which the proposition stands. And this is all we can possibly arrive at, or ceen so much as hope for, in the exercise of faculties ε imperfect and limited as ours. For it were the height of folly, to expect a criterion that should enable us to distinguish truth from falsehood, in cases where a certain knowledge of truth is not attainable.

Sec. VII.—The Distinction of Demonstration into direct and indirect.

We have now done with what regards the ground and evidence of demonstration ; but before we conclude this chapter, it may not be improper to take notice of the distinction of it into direct and incirect.A direct demonstration is, when beginning with definitions, self-evident propositions, or known and allowed truths, we fom a train of syllogisms, and combine them in an orderly manner, continuing the series through a variety of successive steps, until at last we arrive at a sullo is. whose conclusion is the propo-
sition to be demonstrated. Proofs of this kind leave no doubt or uncertainty behind them; because all the several premises being true, the conclusions must be so too, and of course the very last conclusion, or p_{pr}, position to be proved. I shall not, therefore, any fuit ther enlarge upon this method of demonstrating; having, I hope, sufficiently explained it in the forcoroing part of this chapter, and shown wherein the force and nalidity of it lies. The other species of demonstration is the indirect, or as it is sometimes called, the at:s,gical. The manner of proceeding here is, by assuming a proposition which dircetly conneredi ts that we mean to demonstrate, and ticnce by a continued train of reasoning, in the way of a direct demonstration, deducing some absurdity or manifest untruth. For hereupon we conclude that the proposition assumed was false, and theace arain, by an immediate consequence, that the proposition to be demonstrated is true. Thus Liuclid, in his third book, being to demonstrate, that circh's which touch one another intwardly have not the same centre; assumes the direct contrary to this, aiz. that they have the same centre: and hence by an evident train of reasoning, proves, that a flart is equal to the whole. The supposition thercfore leading to the absurdity he concludes to be false, viz. that circles touching one another inwardly hatic the same centre, and thence again immediately infers, that they have not the same centre.

Scc. VIII.-Giround of Reasoning in indirect Demon:itrations.
Now because this mamer of demoristration is accounted by some not altogether so clear and satis \ddagger tory, nor to come up to that full degree of cvidence, which we meet with in the direct way of proof; I shall, therefore, endeavour here to give a particular
inlustration of it, and to show that it equally with the other leads to truth and certainty. In order to this we must observe, that two propositions are said to be contradictory one of another, when that which is asserted to be in the one, is asserted not to be in the other. Tinus the propositions-circles that touch one antier invurdly have the same centre-and circles that touch one anoiher inzardly have not the same centreare contrudictories; because the second asserts the direct contrary of what is asserted in the first. Now in all contradictory propositions, this holds universally, that one of them is necessarily true, and the other necessarily false. For if it be true, that circles, which touch one another inwardly, have not the same centre, it is unavoidally false, that they have the same centre. On the other hand, if it be false that they have the same centec, it is necessarily true, that they have not the same centre. Since, therefore, it is impossible for them to be both true or both false at the same time, it unavoidably follows, that one is necessarily true, and the other necessarily false. This then being alJowed, which is iadeed self-evident, if any two contradictory propositions are assumed, and one of them can iy a clear train of reasoning be demonstrated to be false, it necessarily follows that the other is true. For as the one is necessarily true, and the other necessariiy false, when we come to discover which is the false proposition, we thereby also know the other to be true.
Sec. IX.—Indirec! Demonstrations a sure Guide to Certainty.
Now this is precisely the manner of an indirect demonstration, as is evident from the account given of it above. For there we assume a proposition which dircety contradicts that we mein to demonstrate, and
having, by a continued series of proofs, slown it to be false, thence infer that its contradictory, or the proposition to be demonstrated, is true. As thewfor: this last conclusion is certain and unavoidable, let u; next enquire, after what manner we come to be satified of the falsehood of the assumed proposition, that so no possible doubt may remain, as to the force ath valicity of demonstrations of this kind. The masmer, then, is plainly this. Beginning with the assumed proposition, we, by the help of definitions, selfecident truths, or propositions already estanlished, continue a series of reasoning, in the way of a direct demonstration, until at leareh we arrive at some absirdity or known falsehood. Thus Eurli', in the exatiople before mentioned, from the stippositimia that circles touching one another inwar!!; hare the same
 Since, therefore, by a due and orderly process of reasoning, we come at last to a false conchion, it is manifest, that all the premises cannot be tive. For were all the premises true, the last conclusion must be so ton, by what has been before demonstrated. Now as to all the other premises made use ofin the course of reasoning, they are manifest and known truths by supposition, as being either definitions, self-evident propositions, or truths estallished. The assumed proposition is that only as to which any doubt or uncertainty remains. That alone, therefore, can be filse, and indeed, from what has been already shown, must unavoidably be so. And thus we see, that in indirect demonstrations, two contradictory propositions being laid down, one of which is demonstrated to be false, the other, which is always the proposition to be proved, must necessarily be true; so that here, as well as in the direct way of proof, we arrive at a clear and satisfactory knowledge of truth.

Sec. X.-A A:articular Case of Indirect Demonstration.
This is universally the method of reasoning in all avological or indirect demonstrations; but there is one particular case, which has something so singular and curious in it, that well deserves to be mentioned by itself; more especially, as the ground on which the conclasion rests witi require some farther illusiration. It is, in short, this : that if any proposition is assumed, from which, in a direct trait of rasolimb, we cen deduce its contaxictory, the proposition so asamed is false, and the comadictory one true. lor if we suppose the assumed proposition to be true, then, since all the other premises that enter the demonstration are also true, we shall have a series of fasoning, consisting wholly of true premises; whence the last conclusion, or contradictory of the assumed proposition, must be true likewise. So that by this means we should have two contradictory propositions both true ai the same time, which is manifestly im. possible. The assumed proposition, therefore, whence this absurdity flows, must necessarily be faise, and consequentiy its contradictory, which is here the proposition deduced from it, must be true. If then any propositon is proposed to be demonstrated, and we assume the contradictory of that proposition, and thence directly infer the proposition to be demonstrated, by this vary means we know that the propesition so inferred is true. For sunce from an assumed proposition we have deducedi is contradictory, we are thereby certain that the assumed proposition is felse; and if so, then its contradictory, or that deduce i irom it, which in this case is the s:me with the proposition to be demonstrated, must be true.

Scc. XI.-A due Knowlegde of the Principles of Losic indishensubly necessary to make us proher judges of Demonstration;
That this is not a mere empty speculation, void of all use and application in practice, is evident from the conduct of the mathematicians, who have adopted this manner of reasoning, and given it a place anions their demonstrations. We have a curious insturce of it in the twelfth proposition of the ninth book of the elemets. Eaclid there proposes to demonstrate, \boldsymbol{f}, at in any series of numbers, visins frum andisin semprrical trogression, all the prime numbers thai motatere the lust term in the series, will also measure the nest ajer unity. In order to this he assumes the contridictor: of the, proposition to be demonstrated, namuly that some frime number meusuring the last term in the serite, does not ineasure the next after unity, and thence by a continued train of reasoning proves, that it actually does measure it. Hereupon he concludes the assumed proposition to be false, and that which is deduced from it, or its conradictory, which is the very proposition he proposed to demonstrate, to de truc. Nuw that this is a just and conclusive way of reasomas, is abundantly manifest, from what we have su cleatiy established above. I would only here observe, how necessury some knowledge of the rules of losic is, to chable us to judge of the force, justiess, and validity of demonstuitios; since such may sondetime; occur, where the truth of the proposition demonethe.ed will nettha: be owned nor percived, unless we know before-hand, by means ul logic, that a conclusion so deduced, is necessarily true and valid. For though it be readiy allowed, that by the mere streisisth of our natural faculties, we can at onice discern, ilat of two contradictory propositions, the one is Itcciost-
rily true, and the other necessarily false : yet when they are so linked together in a demonstration, as that the one serves as a previous proposition, whence the other is deduced ; it does not so immediately appear, without some knowledge of the principles of logic, why that alone, which is collected by reasoning, ought to be embraced as true, and the other, whence it is collected, to be rejected as false.
Sec. XII.—. Ind of itself sufficient to guard us against Error and fulse Reasoning.
Having thus, I hope, sufficiently evinced the certainty of demonstration in all its branches, and shown the rales by which we ought to proceed, in order to arrive at a just conclusion, according to the various ways of arguing made use of ; I hold it needless to enter upon a particular consideration of those several species of ble veaconing which logicians distinguish by the name of sthisens. He that thoroughly understands the form and structure of a good argument, Twili of himseif readily discern every deviation from it. And although sohhisms have been divided into many classes, which are all called by sounding names, that therefore carry in them much appearance of learning; yet are the errors themselves so very palpable and obvious, that I should think it lost labour to write for a man capabie of being misled by them. Here, therefore, we choose to conclude this third part of logic, and shall in the next book give some account of method, which, though inseparable from reasoning, is nevertheless always considered by logicians as a distinct operation of the mind; because its influence is not confinel to the mere exercise of the reasoning faculty, but extemd in some degree to all the transactions of the uiderotaning.

BOOS IV.

OF MUTHOD.

CHAP. I.
OF METHOD IN GENERAL, AND TIIF DIUISIGN OF IT INTO ANALYTIC AND SYNTHETIC.

Sec. I.-The understanding sometimes cmployed in putting together known truths;

W_{e}of the mind, whose office it is to search after truth, and enlarge the bouncis of human latowledre. There is yet a fourth which regards the disprosai and atrangement of our thoughts, when we caricavour so to put them together, that their mutual comesion and dependence noy be clearly seen. This is what loricians call method, and place always the last in order, in explaining the powers of the understanding ; because it necessarily supposes a previous exercise of our other faculties, and some pros ress made in knowledge, before we can exert it in any extonsive degree. It often happens, in the pursuit of truth, that unc:pected discoveries present themselyes to thie mind, and those, too, relating to subjects very remote from that about which we are at present employed. Even the subjects themse!ves of our en puicy, are not always chosen with a due regard to orde i, and their dependence one upon another. Chance, our particular way of life, or some present and pressirs sicis, cition prompt us to a variety of rescatches, that have tat
little connexion in the nature of things. Whem, therciore, a man accustomed to much thinking, concs, after any considerable interial of time, to take a survey of his intellectual açuisitions, he seldom finds reason to be satisfied with that order and disposition, according to which they made their entrance into his understanding. They are there dispersed and scattered, without subordination, or any just and regular coherence ; insomuch that the sul,serviency of one truth to the discovery of another, does not so readily appear to the mind. Hence he is convinced of the necessity of distributing them inte - various classes, and combining into an uniform system whatever relates to one and the same subject. Now this is the true and proper business of method; to ascertain the various divisions of human knowledge, and so to adjust and connect the parts in cvery branch, that they may seem to grow one out of another, and form a regular body of science, rising from first principles, and proceeding by an orderly concatenation of traths.

Sec. II.-Somitimes in the Search and Discovery of such as are unknown.
In this view of things, it is plain, that we must be before-hand well acquainted with the truths we arc to combine together : otherwise how could we discerin their serveral connexions and relations, or so dispose of them as their mutual dependence may require? But now it often happens, the understanding is employed, not in the arrangement and composition of known truths, but in the search and discovery of such as are unknown. And here the manner of proceeding is very different, inasmuch as we assemble at once our whole stock of knowiedge relating to any subject, and, after a general survey of things, begin
with examining them separately and by parts. Hence it comes to pass, that whereas at our first setting out, we were acquainted only with some of the grand strokes and outlines, if I may so say, of truth, by thus pursuing her through her several windings and recesses, we gradually discover those more inward and finer touches, whence she derives all her strength, symmetry and beauty. And here it is, that when, by a narrow scrutiny into things, we have unravelled any part of knowledge, and traced it to its first and original principles, insomuch that the whole frame and contexture of it lies open to the view of the mind ; here, I say, it is, that, taking it the contrary way, and beginning with these principles, we call so adjust and put together the parts, as the order and method of science requires.

Sec. III.—Illustrated by the Similitude of a Watch.

But as these things are best understood when illustrated by examples, especially if they are obvious, and taken from common life; let us suppose any machine, for instance, a watch, presented to us, whese structure and composition we are as yet unacquainted with, but want, if possible, to discover. The manner of proceeding, in this case, is, by taking the whole to pieces, and examining the parts separately one after another. When by such a scrutiny we have thoroughly informed ourselves of the frame and contexture of each, we then compare them together, in order to judge of their mutual action and influence. By this means we gradually trace out the inward make and composition of the whole, and come at length to discern, how parts of such a fom, and so put together as we found, in unrave!ling and taking them asunder, constitute that particular machine called a watch, and contribute to all the surval motions
and phenomena observable in it. This discovery being made, we can take things the contrary way, and, beginning with the parts, so dispose and connect them, as their several uses and structures require, until at length we arrive at the whole itself, from the unravelling of which these parts resulted.
Sec. IV.-Ground of the Analytic and Synthetic Mc. thods.

And, as it is in tracing and examining the works of art, so it is in a great measure in unfolding any part of numan knowledge. For the relations and mutual habitudes of things, do not always immediately appear, upon comparing them one with another. Hence we have recourse to intermediate ideas, and, by means of them, are fumished with those previous propositions, that lead to the conclusion we are in quest of. Ancl if it so happen, that the previous propositions themselves are not sufficiently evident, we endeavour, by new middle terms, to ascertain their truth, still tracing things backward in a continued series, until at. length we arrive at some syliogism, where the premises are first and selferidant principles. This done, we become perfectly satisfied as to the truth of all the conclusions we have passed through, inasmuch as they are now seen to stand upon the firm and immovable foundation of our intuitive perceptions. And as we arrived at this certainty, by tracing things backward to the original principles whence they flow, so may we at any time renew it by a direct contrary process, if, beginning with these principles, we carry the train of our thoughts forward, until they lead us by a comnected chain of proofs, to the very last conclusion of the series.

Sec. V.-Division of Method into Analytic and Sy:thetic.
Hence it appears, that in disposing and putting together our thoughts, either for our own use, that the discoveries we have made may at all times lie open to the review of the mind ; or, where we mean to communicate and unfold these discoveries to other, there are two ways of proceeding, eg̣tuily within mi: choice. For we may so propose the time ris ratians to any part of knowledge, as they prented tumselves to the mind in the manner of investipation, carrying on the series of proofs in a r.werse grter, until they at lust terminate in fiest principles : re, begiming with these principles, we tale the contray way, and from them dence, b, a divect twin of vasoning, all the several p:upsions we wht to entablish. This diversity in the manner of arouk ins (ai: thou lits eries rise to the thoguid divima of methord cstablished among lugicuns. For mathon, acospdius to their use of the word, is nothine chas but the onder and dispocstion of our thourlits relatim;; to :ny subjuct. When truths are so joposed and pet together. as they were or might have been disconcoch. this i: celled the analytic mothot, ew the meted if isolution; in mone as it traces !hiners backward whersmen,
 ripe. When, on the other hand, they ate dwcuced fom these pribepples, aned comnechd aconting th their methat depadenes, ineothed that the truths fre: in order tend always to the cicmurn antion of thow that follow, this constitutes what ue will de wep: hetic methot, or methet of compurim. For hesw we procecd
 ah, and combers then into ole whele, or sestem, in suth manner, w.u the understanding is chalded

distinctly to follow truth through all her different stages and gradations.

Sec. VI.—Called otherwise the Method of Invention and the Method of Science.

There is farther to be taken notice of, in relation to these two species of method ; that the first hats al-
 catise it cheserus the crder in when cur thoughts surceed one another, in the invertion or discovery of tro:h. The other, again, is often cenominated the m. hod of doann, or instruction, inasnuch as in layin, our thongts helore others, we generally chocse a woced in tie senthetic manner, deducing them fom thetie itst pinciphes. for we are to cbserve, tant ahthous: there is great pleasure in pursuing trutin in the method of investig ation, because it places us in the condtion of the inventor, and shews the partionlar trwin and process of thinking by which he camived at his ti-woveries; yet it is net so well accommodatcd to the poresel evidence and conviction. For at can frrt suting ont, we are commonly unable to divine $\because h$ we the minims will lead is ; inasmuch that our :cacarines are for some tine bittle better than a mere moping in the dont. And eva diter light begme to inent: in uporus, we are still cbliged to many wevews, wd a natat comonison of the several otep; Whe invengen arem thenselve. Nu, when welac manalod the who, and rached the yoy fsentioun whin our shooveries stand, all ow certinit, in regard to their trath, will be iouet in a :, ent numbe to wice frem that comexion we are now
 a in the onde of ampesidon. But in the smanctic reance of choping cur thenghts, the cue is quite

and advance by regular deductions from them, every step of the procedure brings evidence and conviction along with it ; so that in our progress from one part of knowledge to another, we have always a clear perception of the grounds on which our assent rests. In communicating therefor, our discoveries to others, this method is apparently to be chosen, as it wonderfully improves and enlightens the understanding, and leads to an immediat: perception of truth. And hence it is, that in the format; pages, we choose to distinguish it by the name of the metaod of science; not oaly as in the use of it we arrive at scicnce and. cutanty, but because it is in fact the method, in which ail these parts of human knowlentre, that properis bear the mane of sciences, are andoms to the delivered. B :it we now proceed to emplata these two hithis of method more particularly.

CHAP. II.

OF THE METHOD OF INVENTIHN..
 Raman il:
Br the moikod of inverion we dmatrend such a disposition and aremement of our thents, as at

 Now it is phan, that on heat: a sebect secco- flaty according t.) A, methe we have no more to do

regard to all the active parts of human life, especialy when reduced to that which is in the schools termed an art ; that the rules, by which we condact ourselves, are no other than a series of observations drawn from the attention of the mind to what passes, while we exercise our faculties in that particular way. For when we set about any invention or discovery, we are always pushed on by some inward principle, disposition, or aptitude siall I cell it, which we expenience in ourselves, aid which makes us beliere, that the thing we are in ques: s^{2}, is not alto jether bcoond our reach. We tirecefye beryin with essaying our strength, and are sometimes successful, though perhaps more frequently not. But as the mind, whici earnestly bent upea any pursut, is not easily discouraged by a few dsuppuitmenta, we are only set upon renewing our enticavous, wd, 1 an obstinate perseverence, and repeated trials, often amive at the discovery of what ve have in ricw. Now it is natural for a man of a curioiis and manivitive tum, after having mastered any fat of knc: idge vin srat labour and dificutif, to set himself to exanaine how he happened to miscarry in his first attempts, and by wime particular mothod of proctuc: he at length came to be succoseful. By t mems we disestio on the one han, those rocks atel shelves which stand most in our way, and are ait to distub and ciock our progress; ani on the other, that more sure and certen coume, which if we conthane in stadia; will biers es to the atianment of
 and inventions of humal hit, wath, as we have alrady said, are fandel urom a series of reles and otservations, whetes out the true whe geane manner of arriving at an ctemment. When the mind rests satisfied in a bue conterplaton of the raless and the reasons on which they are foundel, chis kind flacyi-
edge is called speculative. But if we proceed farther, and endeavour to apply these rules to practice, so as to acquire a habit of exerting them on all proper occasions, we are then said to be possessed of the art itself.
Sec. II.-Why in treating of the Mrthorl of Invention, we must give some account of the Alit itself.
From what has been said, it appears, that, in order distinctly to explain the method of invention, we must take a view of the understanding, is employed in the search and investigation of truth. For by duly attending to its procedure and advances, we shall not only discover the rules by which it conducts itself, but be enabled also to trace out the several helps and contrivances it makes use of, for the more speedy and effectual attainment of its ends. And when these particulars are once known, it will not be difficult fur us, in laying open our discoverics to uthers, to combine our thoughts agreeably to the method here required. Becausi, having fixed and ascertained the rules of i, and teins perfectly acquainted with the conduct and manner of the mind, we need oily take a view of the sevcral truths, as they succeed one another in the series ol investigation, set them in order before us, and failly transcribe the appearance they make to the understanding. Hence it is, that logicians, in treating of the method of invention, have ant. merely confined themselves to the laying down of directions for the disposal and arrannements of our thoughts; but have rather explained the ant itself, and established those rules by which the nit:d ought to proceed in the exercise of its inventive puwers. For they rightly judge, that if these were thonogly understood, the other could no longer ramininubiown. by this means it happens, that the motiod of insontion is become at:other expression for the art of 5%
vention, and very often denotes the conduct and procedure of the understanding in the search of truth.And as some knowledge of the principles of the art, is in a manner absolutely necessary towards a true conception of the rules by which we ought to govern and dispose our thoughts in treating subjects after this method; we shall, therefore, follow the example of other logicians, and endeavour to give some short account of the business of invention, and of those several helps and contrivances by which the mind is enabled to facilitate and enlarge its discoveries.
Sec. III.-Attention and a Comprehensive understanding the fireharatory qualifications to Invention.
It has been already observed, that when the mind employs itself in the search of unknown truths, it begins with assembling at once its whole stock of knowladge relating to the subject, and after a general survey of things, sets about examining them separately and by parts. Now as in this separate examination, the number of parts continually increase upon usand as it is farther necessary, that we survey them on all sides, compare them one with another, and accurately trace their mutual habitudes and respects-it is from hence apparent, that in the exercise of invention, two things are of principal consideration. First, an enlarged and comprehensive understanding, able to take in the great multitude of particulars, that frequently come under our notice. Secondly, a strong habit of attention, that lets nothing remarkable slip its view, and distinguishes carefully all those circumstances which tend to the illustrating and clearing the subject we are upon. These are the great and preparatory qualifications, without which it were vain to hope, that any considerabie advance could be made in enlarging the bounds of human knowledge. Nor
ought we to esteem it a small advantage, that they are in some measure in our own power, and may, !s a proper cultivation, be improved and stecncticnad to a deree almost beyond belief. We find ine experience, that the study of mathematies in pariculai: is grealy serviceable to this end. IIabis, we aliknow, grow stroncrel by exercise ; and as in this s. $\therefore \cdots$ there is a peipeual call upon our attention, it by degrees becomes natural to us, so as that we can preserve it steady and uniform, through long and intricate calculations, and that with little or no fatigue to the understanding. But a yet more wonderful advantage, arising from the culture of the mathematirs, is this, that herd:- we in some measmee cxtend the dimensions of the human mind, enlarge its conmasi of perception, and accustom it to wide and crinperehensive vicus of things. For wheress at our first setting out, we often fiud it cextremely difieair (') master a short aided easy demonstiation and trace the connexion of its several parts : yet as we advance in the science, the understandiar is seen spownally to didut, and stretch itsclf to a greater siee ; insommel that a long and intricate sariss of reasonines is often tafen in with scarce any labour of homerit; and not only so, but we can in sone cases, with a single rlance oi our minds, run through an entire syitem of truths, and extend our vie: at once to all the serial links that unite and hold them together.
Sec. IV.—Kelicions cheier of intermediare Iaws onotier great requisice in this. $1: \%$.

When we are furnished with these two pre?amory qualifications, the next requisite to the disconey of truth is, a judicious choice of intermediate ideas. We have seen, in the third part of this treatise, that many of our ideas are of such a nature as not to discover

D 2
these several habitudes and relations by any immediate comparison one with another. In this case, we must have recourse to intermediate ideas; and the great art lies in finding out such as have an obvious and perceivable connexion with the ideas whose relations we enquire after. For thus it is, that we are furnished with known and evident truths, to serve as premises for the discovery of such as are unknown. And indeed the whole business of invention seems, in a great measure, to lie in the due assemblage and disposition of these preliminary truths. For they not only lead us, step by step, to the discovery we are in quest of, but are so absolutely necessary in the case, that without them it were vain to attenspt it ; nothing being more certain, than that unknown proposirions can no otherwise be traced but by means of some comexion they have with such as are known. Nay, reason itself, which is indeed the art of knowledge, and the faculty by which we pusin on our discoveries; yet by the very definition of it implies no more, than an ability of deducing unknown truths from principles or propositions that are already known. Now, although this happy choice of intermediate ideas, so as to furnish a due train of previous propositions, that shall lead us successively from one discovery to another, depends in some measure upon a natural sagasiiy and quickness of mind ; it is yet certain, from experience, that even here much may be effected by a stubborn application and industry. In order to this, it is in the first place necessary, that we have an extensive knowledge of things, and some general acquaintance with the whole circle of arts and sciences. Wide and extended views add great force and penetration to the mind, and enlarge its capacity of judging. And if to this we join in the second place, a more particular and intimate study of whatever re-
lates to the subject about which our enquiries are employed, we seem to bid fair for success in our attempts. For thus we are provided with an ample variety out of which to choose our intermediate ideas, and are therefore more likely to discover some among them that will furnish out the previous propositious necessary in any train of reasoning.
Sec. V.-Sagacity and a quickness of unders"andins greatly promoted by the stady of Alsebra.
It is not, indeed, to be denied, that when we have even got all our materials about us, much still depends upon a certain dexterity and adidress, in singling out the most proper, and applying them skiltu:ly for the discovery of truth. This is the talcul which is known by the name of sasacity, and commonly supposed to be altogether the gift of nature. But yet I think it is beyond dispute, that proutice, experience, and a watchful attention to the procedure of our own minds, while employed in the cxercise of reasoning, are even here of very great avail. It is a truth well known to those who have made any considerable progress in the study of alricha, that an address and skill in managinģ intricate questions may be very often obtained, by a carcful imitation of the best models. For although when we first set out about tie solution of equations, we are puzzled at every step, and think we can never enough admire the sagacity of those who present us with elegant models in that way ; yet by degrees we ourselves arrive at a great mastery, wo only in devising proper equations, and coupling them artfully together, so as from the mole complicated to clerive others that are simple ; brt a! or in comtriving useful substitutions, to free our calculations from fractions, and those intricacies tised aido from saisis and irrational quantities

Nor is it a small pleasure attending the prosecution of this study, that we thus discern the growing strength of our matds, and see ourselves approaching nearer and nearer to that sagacity and quicbriess of understanding which we see so much edmined in others, and were at first apt to conciude altogether beyond our reach.
Sec. VI-Winare Aha and Mreagement are regiard in the lacinass of inatu:ticn.
We have now considered these requisites to inrention, that have their foundation in the nateral talents of the mind : awi enarged and comprehensive mudersianims, a strones habit of attintios, a sagacity and ituckness in discerning and applying intermediate ideas. Let us next take a liew of such cther helps, as more immediately depend upon art arid management, and show the address of the mind, in contriving moans to facititate its discoveries, and free it from all unnecessary fatigue and labour. For we are to observe that though the capacity of the intullect may be greatly enlarged by use and exercise, yet still our vieirs are confined within certain bounds, beyond which a finite understanding cannot reach. And as it often happens, in the investigation of truth, especially where it lies at a considerable distance from inrst principles, that the number of connexiors ard relations are so great, as not to be taken in at once by the most improved understanding; it is the refer one great branch of the art of incentin, to take account of these relations, as they come into view, and dispose them in such manner, that they alweys lie open to the inspection of the mind, whan disposed to turn its attencion that way. Iy this neans, without perplexing ourselves with too many consideratiens at once, we have get these relations at
command, when necessary to be taken notice of :a the prosecution of our discoveries : and the uaderstanding thus free and disengaged, can bend its powers more intensely towards that particular pait of the investigation it is at present conceried wid. Now in this, according to my apprehension, lies the great art of human knowledge ; to manage wih shil the capacity of the intellect, and contrive such help; as may bring the most wicic and exteader whores within the compass of its natural powers. W!em, therefore, the multitude of relations increasc, very fast upon us, and grow two unwieldy to be dealt with in the lump, we must combine them in difictent classes, and so dispose of the several paris, as that the may at all times lie oper to the leinheiy sur: of the mind. By th:is means we aroid perplexity and conlusim, and are ewbled to conduct our rescaredes without bens preale! with that infinite crowd of perticulars, thet trequendy fiil uader our notice in !ans and diflicult investisations. lou by carrens our attention succersi: cly from one part to another, we c.m upon occasion, tak: in the whole ; and knowing ciso the order ana disperition of the parts, may have recourse to aly of ham at pleasare, when its aid beromes necessaiy in the conse of our candulis.

First, han, I say, that aa ordeny combination of thims, athel chasing them together with ant and achdimb, brings sac.et and otherwise managent objut., upona icict with the powso of the med i, e have scen, in the first pat of this tratise, how by tam; numbers in a progressive series, and arcon-

ease, and leave distinct impressions in the understanding. For the several stages of the progression serve as so many steps to the mind, by which it asceads gradually to the highest combinations; and as it can carry its views from one to another, with great ease and expedition, it is thence enabled to run over all the parts separately, and thereby rise to a just coleption of the whole. The same thing happens in all our other complex notions, especialiy, when they grow very large and complicated; for then it is that we become sensible of the necessity of establishing a certain order and gradation in the manner of combining the parts. This has been already explained, at some length, in the chapter of the composition and resclution of our ideas; where we have traced the gradual progress of the mind through all the dificrent orders of perception, and shown, that the most expeditious way of arriving at a just knowledge of the more compounded notices of the understanding, is by advanciag regularly through all the intermediate steps. Hence it is easy to perceive what advantages must arise from a like conduct in regard to those several relations and connexions, upon which the investigation of truth depends. For as by this means we are enabled to being them all within the reach of the mind, they can each in their turns be made use of upon occasion, and fumish their assistance towards the discovery oi what we are in guest of. Now this is of principal consideration in the business of invention, to have our thoughts so much under command, that, in comparin; things together, in order to discover the result of their mutual connexions and dependence, all the several lights that tend to the clearing the stibject we are upon, may lay cistinctiv cpen to the understanding, so as nothing material shall cocepe its riew : because an oversight of this kind,
in summing up the account, must not only greatly retard its advances, but in many cases check its progress altogether.
Sec. VIII.-And enabling us to proceed sradually and with ease in the investigation of Truth.
But, sccondly, another advantage arising from this orderly disposition, is, that hereby we free the mind from all unnecessary fatigue, and leave it to fix its attention upon any part separately, without perplexing itself with the consideration of the whole. Unknown truths, as we have already observed, are only to be traced by means of the relation between them and others that are known. When, therefore, theos relations become very numerous, it must needs gratly distract the mind, were it to have its attention continually upon the stretch after such a multitude of particulars at once. But now, by the method of classing and ordering our perceptions above explained, this inconvenience is wholly preventcd. For a just distribution of things, as it ascertains distinctly the place of each, enables us to call any of them into view at pleasure, when the present consideration of it becomes necessary. Hence the mind proceeding gradually through the several relations of its ideas, and marking the results of them at cuery step, can always proportion its enquiries to its strength : and confining itself to such a number of objects as it can take in and manage with ease, sees more dintinctly all the consequences that arise from comparims them one with another. When, therefore, it coms afterwards to take a revicon of these its sereal advances, as by this means the amount of every step of the investigation is fairly laid open to its insjectiom, by adjusting and putting these together, in due order and method, it is enabled at last to discem the coneli of
the whole. And thus, as before in the composition of our ideas, so likewise here in the search and discoviry of truth, we are fain to proceed gradually, and by a series of successive stages. For taese are so maizy resting places to the mind, whence to look about it, survey the conclusions it has already gained, and see what helos they afford, towards the obtaining of ctiors which it must. still pass through, before it reaches the end of the investigation. Hence it often happors, that very remote and distant truths, which lie far beyond the reach of any single effort of the mind, are yet, by this prosressive method, successively brought to light, and that too with less fatigue to the understanding than could at first have well been magined. For although the whole process, taken toseiber, is frequently much too large to come within the view of the mind at once; and therefore, considered in thit light, may be said truly to exceed its grasp ; yet the several steps of the investigation by themselves are often easy and manageable enough, so that by proceeding gradually from one to another, and thoroughly mastering the parts as we advance, we carry on our researches with wondrous dispatch, and are at lensth conducted to that very truth, with a view to the discovery of which the inquisition itself ras set on foot.
Sec. IX.—Alsebra and Arithmetic, pronerly sheaking, both Arts of Invention.
But now perhaps it may not be improper, if we endeavour to illustrate these observations by an examHe, end set ourselves to trace the conduct and manner of the mind, when employed in the exercise of invention. There are two great branches of the mathematics peculiarly fitted to furnish us with modcls in this way. Arithmetic I mean, and Algebra.

Algebra is thiversally known to be the very art and principle of invention; and in atiametic, too, we are frequentiy put upos the fiading out of unknown numbers, by means of their relations and cermacoions wath others that are known : as where it is required to find a number equal to this sum of two oftiets, or the product oi two others. I choase to borrow my examples chielly from this last science, both because they will be more within the reach of thase for whom this treatise is principally desi ned ; as iniewise, because arithmetic furnishes the best models of a happy sagacity and manargenent, in clasims :und rey, lating our perceptions. So that here, nowe than in any other branch of human knowlel se, we shall have an opportunity of observiny, how much an orde:ly disposition of things tends to the ease and success of our enquiries, by leaving us to canvass the parts separately, and thereby rise to a gradual conception of the whole, without entangling oursel es with too many considerations at once, in any single step of the investigation. For it will indeed be found, that a dexterity and address, in the use of this last advantage, serves to facilitate and promote our discoveries, almost beyond imagiticion or belief.
Scc. X.—The method of classing our Perceftions in
We have already explained the manner of reducing numbers into classes and of distinguishing these classes by their several names. And now we are farther to observe, that the present method of notation is so contrived, as exactly to fall in with this form of numbering. For as in the names of numbers, we rise from units to ter., from tens to hundreds, from hundreds to thousands, Erc. so likewise in their notation, the same figures, in different places, signify
these several combinations. Thus 2 in the first phace. on the right hand denotes two units, in the second place, it expresses so many tens, in the third hu\% dreds, in the fourth thotourds. By this means it happens, that when a number is written down in figures, as every figure in it expresses some distinct combination, and all combinations together make u! the total sum ; so may the several figures be coisisiered as the constituent parts of the number. "Hins the number 2436 , is evidentiy, by the very notation, distinguished into lur parts, marked by the four foures that serve to express it. For the first denotes troo thousand, the second fin: hundred, the third thir$t y$ or three tens, and the fourth vin. These serarn parts, though the; here appear in a conjoined form, may yet be also expressed separatily thus, 2000, 400 , 50, and 6, and the amount is exacty the same.
Sec. XI.-The idelis thence derived towarlis an cawy addition of numbers.
This then being the case, if it is reguired to find a number equal to the sum of two others siven ; our business is. to emmine separately these given numbers, and ii they appear too large and bulky to be deale with by a single effort of thought, then, since the very notation, distinguisines them into diffrent pats, we must content ourselves with considering the pats asunder, an! finding their sums one after ancuc. For since the whole is ceal to all its parts, if we find the sums of tiee several parts of which any two numbens consist, we certainly find the total sum of the two numbers. And therefore, these different sums, united an! put together, according to the es:ublished miles of notation will be the very number lie are in quest of.' Let it be proposed, for instance, to find a number equel to the sum of these two:

2436, and 4.j52. As the finding of this by a single effort of thought would be too violent an creveise i... the mind, I consider the figures, representing theo. numbers, as the parts of which they consist, and therefore set myseif to discover their sums one after another. Thus 2 , the first figure on the risht hand of the one, added to 6 , the first figure on the right hand of the other, makes 8 , which is throfore the sum of these two parts. Again, the sum of 5 and ε, the two figures or patt in the second place, is likewise 8. But now as froures in the secomplace. denote not simple wis!, lat tens; heme it is plain, that 5 and 3 here, signify tive tens and three then, w 50 and 50 , whose sum therefore nust be cinght tho or 80 . And here again, 1 call to mini, that hasiag already obtained one li; ure of the sum, if I place that now found immediately after it, it wili towes stand also in the second place, and so reathy explas, as it ought to do, cight tens, or 80 . And thus it is hapisy contivech, that though in the subnon of the this, I consider the figures composing them as denoting culy simple unit", which makes the operation c:isier and less perplexed; yet by the phee their sum obtains in the maniber found, it expresses the real amount of the jarts cadied, taken in their full and complete values. The same thing hapiens in summing the haza'reds and thousands; that is, though the figures expressing these combinations, are added tosether as simple units: yet their sums, standing in the third and fourth piares of the cumber found, thereby really denote the hundreds and thousands, and so represent the true value of the parts added.
Sec. Xil.—hecullw in tis, severel wthps ly which it is carried on, the minn'l's fat to little or no fatigue.
Hence then we hate a manifest proof of the great advantages derived from in s.etful method of classing
eur perceptions. For as the numbers themselves are ty this means distinguished into different parts which brings them more readily within the compass of the understanding ; so by taking these parts separately, the operations about numbers are rendered very easy and simple. And indeed it is particularly worthy our notice, and though in adding two very large numbers logether, the whole process is of sufficient length ; yet the several steps by which it is conducted, are managed with incredible dispatch, and scarce any fatigue to the mind. This is apparent in the example given above, where we see, that in every advance from one part to another, nothing more is required than to) add together the two figures in the like places of the numbers to be summed. But what is yet more wonderful, though in the progress of a long operation, the figures rise in their value as we advance, and grow to signify thousands, millions, billions, $\mathfrak{E c}$, yet so happily are they contrived for expressing the different parts of numbers, that in every step of the procedure we consider them as denoting only simple mits, all other deficiencies being made up, by the places their sums obtain in the total amount. And thus it is so ordered in this admirable form of notation, that however large the numbers are that come vieder examination, they are nevertheless managed with the same ease as the most simple and obvious collections; becabse in the several operations about them, the mind is neither tied down to the view of too many part, ot once, nor entangled with any considerations regarding the bulk and composition of those parts.
Sec. XIII.——"iss farther Ilustrated by an Example in itelicilicationi.
And if these alvantares are so very manifest in the frst and simplest rules or arithmetic, much more do
they discover themselves in those that are intricate and complex. Let a man endeavour in his thoughts to find the product of two numbers, each consisting of twenty or thirty places, and that without considering the parts separately; I believe he will soon be sensible, that it is a discovery far beyond the limits of the human mind. But now in the progressive method above explained, nothing is more simple and easy. For if we take the first figure on the right hand of the one number, and by it multiply every figure of the other separately; these several products, connected according to the established laws of notation, must truly represent the tutal product of this other, by that part of the multiplying number. Let us suppose, for instance, the figure in the unit's place of the multiplier to be 2 , and the three last places of the whitioncand to be 432 . Then, 2 mudiplying 2 produces 4 , which therefore is the first part of the product. Again, 2 multiplying 3 produces 6 . But now 3 standfing in the second place of the multiplicand, denotes its real ratue threc ans, or 30 , which therefore tuisen twice, amount to six tens or $60 .{ }^{\prime}$ And accordingly the figure 6 , coming after 4 already found, is thereby thrown into the second pace of the product, and so truly expresses 61 , its full and adeguate valuc. The same thing happens in multiplying 4 , which standing in the place of hurdrcts, its product by 2 is 800 .But this very sum the figure 8 , produced from 2 and 4, really denotes in the total product. Because coming after 64 , the two parts already found, it is thereby determined to the third place, where it of course expresses so man' Iundreds. This process, it is evident, may be continucd to any length we please; and it is remarikable, that in like manner as in addition, thourg the value of the figures in the multiplicand continually rises upon us, yet we all along proceed
with them as simple units; because the places of the several products in the total amount, represent the just result of multiplying the figures together, according to their true and adequate value.
Scc. XIV.-Of the disposition of the several Products in orater to iddtition.

Having thus obtained the prodact by the first figure of the multiplier, we next take that in the second piace, and proceed with it in the same manner. This second opreation gives us the effect of that higure, considered as a simple digit. But as it stood in the second phace, and therefore reanly dinoted so many tens, heace it is phais, that the product now gained must be yet muhipited by ten, in order to express the true product sought. This is incordingly done in the oprethe, by placing the first fate of this second product under the secoud figure of the irst product. ior this, when they come to be added together, has the same effect as annexing a cypher, or multeplying ly or as every one knows who is in the least acquainted with the rules of arithmetic. in like mannor, when we multiply by the figure in the third phace, as this new product is placed still one figure backwards, we do in effect annex two cyphers to it, or multiply it by a hundred. And this we ought certainly io do ; because having considered the multiplying figure as denoting only simple units, when it really capressed so many hundreric, the first operation gives no more tien the hundredth part of the true product. The case is the same in meltiplying by the fourth or fifth figuees, because, the products still running backwards, we thereby in effect annex as many cyphers to them as bring them up severally to their respective adequate value. By this meins it happens, that chough the figures of the multiplier in eve-
ry advance, dennto sith higher and higher combinatho, yet we all at, eg pecen whit them as simple diss ite diamben of the sevelal puducts in order to addition makiar up for all the culturais, that arise frem this way of consiatiog them. If aen in this metare of prechure, we have osmaned the proract of the mukiphican: into all the dificreat parts of the matither, by whing these poriucts together we obtain also tire total protuct of the (wo numbers.For siace the whole is equal to all its parts, nothines is more evidert, than that the product of any one nuaber into another, must be equal to its product in1 , all the pants of that other : and therefore the ecotral partial products united into rac sum, cannot but truly represtat the real product sourgh.

Thus we see, that in questions of muhtiphation, though the whole process is sometimes s:ituciently fong and tedions, we the sereral steps by when it is caricd on are all very level to the powers of the understandine. For from the accome sitor above it appais, that motais; more is repuired in any of then than barely to multiply one disit by amother. But now this easy rule of gicution is whrfly derived from the before mentiond adneos in chassing our perceptions. I'se to this it is owing, elat tie numbers under consideration are distinguished into parts, and that the several parts are also cleaty represented to the mind in the very form of notation. Non as these parts have an invarible relation one to anolur, and advance in their value by an uniform law of progression; the understanding by means of sech a link can easily hold them together, and carry its views from stage to stage without perplexity or confusion.-

Hence it happens, that however large and mishty the numbers are, so iur as to exceed the immedute grasp of the mind; yet by running srudually through tine several combinations of which they are made tip, we at length comprenend then in their full extrit. And because it would be impossible for the understanding to muktiply very large numbers one into ainoth r, by a simple cffort of thought; thercfore here also it considers the parts separately, and, taking them in an orderly series, advances by a variety of suce ssive steps. It is true indeed, in the progress ϵf the operation, the several figures rise in their value: but this consideration entero, not the work ifself. For there, as we have already seen, though the characters are taken as denoting only simple units, yct the order and disposition of the partial products, exhibits each according to its real amount. Hence in every step, we have only to multiply one digit by another, which as it is attended with scarce any difficulty, the whole process is carried on with wondrous dispatch. And thus by a series of easy operations, we at length rise to discoveries, which in any other method of procedure, would have been found altogether beyond the reach of the mind.
Sec. XVI.-The art of Classing our Percentions the great Mean and Instrament of Invention.
Since therefore by a due and orderly disposition of our ideas, we can bring the most wide and extended objects upon a level with the powers of the understanding : and since by this also we abridge the fatigue and labour of the mind, and enable it to carry on its researches in a progressive method, without which contrivance, almost all the more remote and distant truths of the sciences must have lain forever hid from our knowledge ; I think we may venture
to affirm, that the art of regiliting and ciassing on perceptions is the great mean and instriment of i.:vention. l is for this reason that I have credecomed in so particular a memer to illostaz: it fom .e. amples in numbers ; because w. have hene n.t ones a perfect model of the art itself, but see aleo in the clearest manner, what helps it furnishu werads a ready comprehension of objects, watamenty inar. tigation of truth. Noi let any one find fault, as i" we had insisted rather too lomg ypoa matiters that are obrious and known to all. If: I am ajp to iaink, that though very few are strangeis to the received method of notation, and the common rates of operation in arithmetic; yet it is not crery one that sets himself to consider the aldees and sagecity that may be seen in the contrivance of then, or to unravel those principles of investigation, whin we have teve so clearly cleduced from them. And this I take to be the reason, that we sometimes meet with instanees of men, who thous thorousiy vessed in the art of invention; with regard to some partumar branches of knowledge ; yet ir tiken ou of their ustal track, find themselves immed!ately at a stand, as if wholly bereft of genius and penetration. With such men invention is a mere habit, camped on in a manner purely mechanical, without any know! dwe of the grounds and reasons upon which the several rules of investigation are founded. Ifance they are unfurnished with those general observations, which may be alike usefully applied in all sciences, with only some little necessary variations, suited to the nature of the subject we are upon. And indeed I know of no surer way to arrive at a fruitful and ready invention, than by attending carchilly to the procedure of our own minds, in the exercise of this distinguished faculty; because from the partictilar rules relating F 2
to any one branch, we are often enabled to derive such general remarks, as tend to lay open the very foundation and principles of the ait itself.
Scc. XVII.-The mamer of proceeding in the resolution of Algebraic questions.
If now we turn our thoughts from arithmetic to algebra, here also we shall find, that the great invention lies, in so rerruiating and disposing our notices of things, that we may be enabled to proceed gradually in the search of truth. For it is the principal airn of this science, by exhibiting the several relations of things in a kind of symbolical language, so to represent them to the imagination, as that we may carry our attention from one to another, in any order we please. Hence, however numerous tlase relations are, yet by taking only such a number of them into consideration at once, as is suited to the reach and capacity of the understanding, we avod perperity and confusion in our researches, and neter put our faculties too much upon the stectel, so as to loose ourselves amidst the mutiphinty of mir own thoughts. As therefore in arithatic, we rise to a just conception of the greatest numbers as considering then made up of raricus prosessive combinations; so likewise in algebra, these maniofld relations that often intervene, between kucwn and unknown quarities, are clearly repesented to the mind, by throwing them into a series of distinct equations. And as the most difficult questions relating to numbers are manarged with ease; because we can take the parts or figures separately, and preeced with them one ofter bother ; so also the mest intricate prodens of aigebra are in like mamer reariiiy unfolded, by exaniming the several cacitions apart, and unraveling them accoiding to certain established
rules of operation. And here it is well worth our notice, that in very complicated problems, producing a great number of different equations, it for the most part so heppens, that every one of them includes a variety of unknown quantities. When therefore we come to solve them separately, as it would too much distract and entangle the mind, to engage in the pursuit of so many different objects at once; our first business is, by artfully coupling the screral equations together, or by the various ways of multiplication, subtraction, addition, and substitution, to derive cthers from them more simple, until at length by such a gradual process we arrive at some new equation, with only one unknown quantity. This cune, we set ourselves to consider the equation last found, and having now to cio with an object suited to the sirem, ih and capacity of the mind, easily by the esi.biished rules of the ari, disconer the guantity sought. In this manner we proceed witi all the seicial unknown quantities one after another, and lavines by a series of distinct onerations taeced them separatcly, the question is thereby completely reselved.
considered as Sabuidiary helfs to intention.

Fitue it apars, that the busines of incention, as pructised in al, chata, deperds entirely upon the art of absin: ing our thoughts, reducincr the number of pationdia then under considuraion at once to the funt possinic, and establisinis that parstessive methel of incesigation, which we have already so filly explaia.d from camples in athmetic. I might asty show that the same dyona.ticin holds equally in other soiences; but having alreaty waseded the bounds I at first prescribeel to myself in this chapter, shall only add, that besicis the grand instruments of
knowledge already mentioned, there are innumerable other artifices, arising out of the particular nature of the subject we are upon, and which may be considered as subsidiary helps to invention. Thus in geometry, many demonstrations of problems and theorems are wholly derived from the consirucion of the figure made use oi, and the drawing oilhas from one point to anotier. In like mener in algesor, the derisins; of proper erni:.ions from the conditions of the question proposed, and cometrine neat cupressions for the unknow quantios, contribute not a litle to the easy solution of pebicas. Amd when we have even caried on the invesigation to some single equation with only one unknown quantity ; as that eakiona quantity may be varionsly perplesed and entangled with others that are known, so as to reguire a multiplicity of different operations, before it can be disenguged, which often involves us in long and intricate calculations, and brings surds and irrational guast ties in our way; in, wonests, to prevent in some measure these inconvenielices, and shorten as much as possible, the process, have fallen upon severad methods of substitution, which are of great service in very compliciad questions. Dut these and such like artifices of invention, cannct be explained at lengin in this short essity. It is enough to lave givea the rader a hine of them, and put him in the way of macechiex them hincuif, when be comes to apply his thoughts to thos 1 nitular Lranches of huwhedge ware tay wre sureaty mode use of.
Sec. MK. -f the ?-cot adrantegts arising from a

There is one thing bowever, that in a particular manner deserves to betaken notice o? befr. ve desmiss this subject ; gad thet is the grom airminges
that may redound to science, by a happy notation or expression of our thoughts. It is owing entirely to this, and the method of denoting the seraral combinatious of numbers by figures standing in different phices, that the most complicated operations in arithmetic atie managed with so much ease and dispatch. Nor i.; it less apparnt, that the discoveries made by algebrat, are wholly to be imputed to that symbolical language made use of in it. For by this means we are enaibed to represent the relations of thines in the form of equations, and by variomsy procecting with the sc equations, to trace out, step by step, the seviral particulars we are in cuest of. Acid to all this, that by such a notation, the eyes and imagination are aiso made stibservient to the discovery of 1 mh . For the thonghts of the mint mese up and disappen eccording as we set extelves to call then intoraew; and therefore, without any particular method of fying and ascertainin; them as tiey occur, the rotieving them again when oat of sighe, would often be no less painful than the very firse exercise of deriuches ticea one from another. When ticuture in tice mersuit of truth we cary our attention forward farm ons pat. of the investignang to another, as nerextheless we have ficequent occasions to lool. back upon the dis-
 wherwise broust ineo view, than by the sunc conree of thenter in which dow were first traced, so many mintrent atontons at once bunblidits prady distwed the mind, aud be attonded with intore troule and buty, Be. Bow, the method of fixing and ascotuin ley our thoughts by a herp and well-tiosen notation, cutirely removes all tise obstates. f ar thus, when we have occawn to run to any fomer descove:ics, as care is taken all abos to whe tis them in proper chanacters, we bed miny cint vir cy:
upon that part of the process where they stand expressed, which will lay them at once open to the mind, in their true and genuine form. By this means we can at any time take a quick and ready survey of our progress, and running over the several conclusions already gained, see more distinctly what helps they furnish towards the obtaining of thcse others we are still in pursuit of. Nay further, as the amount of every step of the investigation lies fairly before us, by comparing them varivisly among themselves, and adjusting them one to another, we come at length to cliscern the result of the whole, and are enabled to form our several discoveries into an uniform and well connected system of truths, which is the great end and aim of all our enquiries.

Sec. XX.—Recafitulation.

Upon the whole then it appears, that in order to proceed successiveiy in the excrcise of invention, we must endeavour as much as possible to enlarge the capacity of the mind, by accustoming it to wide and compratasive views of things: that we mist habituate oursthes to a strong and unchaten attention, which carefully ciastinguisies all the circumstances that come in our vay, and lets nothing material slip its notice: in fine, that we must sumish ourselves with an ample vaiety of intemedinie ideas, and be much in the exercise of singling them out and applying them for the discovery of tuath. These preparatory qualifications oistained, what depends upon art lies chielly in the manner of combining our perceptoms, and ciassirs tiem together with address, so as to escoinsh a progressive method of investidation. And liene it is of greaimportance to contrive a proper nctation or expression of our thoughts, such as may cxhiyt them according to their real appearance in
the mind, and distinctly represent their several divisions, classes, and relations. This is clearly seen in the mainer of computing by figures in arithmetic, but more particularly in that symbolical language, which hath been hitnerto so successitely applied in unravelling of algebraical problems." Thus furnished, we may at any time set about the investipration of truth; and if we take care to note down the several steps of the process, as the mind advances from one discovery to another, such an arrangement or disposition of our thoughts constitutes what is called the method of invention. For thas it is plain that we follow the natural procedure of the understanding, and make the traths we have unravelled to succeed one another, arcordiis; to the order in which they present themselves to the mind, while employed in tracing and finding them out. And here again it well deserves our notice, that as by this means tic whole investigation lies distinctly before us; so by compating the several steps of it anonts thenseives, and observing the roluish hey bear one to mot?cr, we atochathed to form our discoverics isto a regular system of jnowici, e, where the truths advanced are coly linked togutime and deduced in an ordedy oubs firm first principles. This other manner of combining our thoughts, is disimguism at by the hame oif the $m::$ th d d of scicnee, which thereno now aftirs itself to be explained, and is accoidingly the subject of tie enting chapter.

СНАР. II.

of the method of science.
Sec. I.-Kinowledge as derived from the contemplation of our ideas, of a neccssary and unchangeable nature;

IN order to give the juster idea of the rules peculiar to this species of method, and establish them upon their proper foundation, it will be necessary to begin with settling the meaning of the word science, and showing to what parts of human knowjedge that term may be most fitly applied. We have already observed, in the first chapter of the second book, that there are three several ways of coming at the knowledge of truth. First, by contemplating the ideas in our own minds. Secondly, by the information of the senses. Thirdly, by the testimony of others. When we set ourselves to consider the ideas in our own minds, we variously compare them together, in order to judge of their agreement or disagreement. Now as all the truths deduced in this way, flow from certain connexions and relations, discerned between the ideas themselves; and as when the same ideas are brought into comparison, the same relations must ever and invariably subsist between them ; hence it is plain, that the knowiedge acquired by the contemplation of our ideas, is of a necessary and unchangeable nature. But farther, as the relations between our ideas, are not only supposed to be real in themselves, but also to be seen and discerned by the mind; and as when we clearly perceive a connexion or repugnance between any two ideas, we cannot avoid judging them to agree or disarree accordingly; it evidently follows, that our knowledge of this kind is attended with absolute certainty andi conriction, insomuch, that it is impossible
for us to withhold our assent, or entertain any doubt as to the reality of truths so offered to the understanding. The relation of equality between the whole and att its parts, is apparent to every one who has formed to himself a distinct notion of what the words whiole: and fart stand for. No man, therefore, who has these two ideas in his mind, can possibly doubt of the truth of this proposition, that the whole is equal to allitss'ur/s. For this would only be endeavouring to persuade himself, that that was not, which he plainly and unavoidably perceives to be. So that in all cases, where w. discem a relation between any of our ideas, whether. immediately by comparing the one with another, or by means of intermediate ideas, that lay it open di;tinctly to the understandiar ; the knoviedere thence arising is certain and infaltible. I say infalible; be cause we not only perceive and own the truth of proprsitions so offered to the mind, but, having at tie sime time a cleat view of the ground on which our asemt rests, are eatiely satisfied within ourselves, that we cannot possibly be deceived in this perception.
 begets undoubted assuranco, but excludes not all hossibility of being deceived;
This second way of coming at knowled se, is by the means of the senses. from them we receive infermation of the existence of oljucts without is, of tine union and conjunction of different qualities in the same subject, and of the operations of bodics one upin anothri. Thus our eves tell us, that there is in the universe such a body as we cull the san, our sight and touch, that light and heat, or at least the porur of exciting those perceptions in us, co-crist in that body: and lastly, by the same sight we also leam, that tire has the power of dissolving metals, of of reducins (; 2
wood to charcoal and ashes. But now with regard to this kind of knowledge we are to observe, that thoulh when the organs of the body are rightily dispos.rf, and operate in a natural way, we never doubt the bestingory of ctir senses, but from most of the schemes of life upoin their information : yet are not the truths of this class attended with that absolute and infalthle assurance, which belongs to those derived from the contemplation of our own ideas. We find that the senses ficuleently represent objects as really existing, which yei have no being but in our own imaginations; as in creams, phensics, and the eeliriums of a fever. A disorder too in the organs, makes us often ascribe qualities to bodies, entirely different fora those they appear to possess at other times. Thus a man in the jaundice shall fancy every object presented to him yellow; and in bodily distempers, wieve the taste is greatly vitiated, what naturahy produces the idea of sweetness, is sometimes ateried with a quite contrary sensation. It is true, these irregalarities neither ought, nor indeed do they, with cossiderate mon, in any ways teal, to diseredit the testimony of extriencs. He that, anole, and in his sences, and satisfied that his organs opereted duly, shoudd whe it into his head to doubt whe her fre wou'd bum, ne arsenic prison him, and therefore rastily venture upon these objects, would soon be con:inccil of his erom in a way not muc! to his liking. As nererthelus the senses do sometimes impose upon us, thenc is no absolute and infallible security that they may not at uthars; thercore the assurance they protuce, hough reasontte, sutistying, and sufficientif well iounded to determine us in the several actions an: ocrurences of life, is ret of such a nature, as not acsuaty to exime all possbitity ring deceivci. sence somic men go so far as to maintain, that
we ought to distrust our senses altogether ; nay, whole sects among the ancients, because of this bare possibility, which really extends no farther than to matters of exherience and testimony, yet established it as a principle, that we ought to doubt of every thiner Nor are there wanting philosophers among the moi:erns, who, upon the same ground, ciny the existence of bodies, and ascribe the percepuiens earited in us, not to the action of extemal matter, but to certain established laws in nature, which operate upon us in such manner as to produce all those several effects that wem to flow from the real presence of ohjects variously effecting our perception. It is not my design here to enter into a particular discusion of these matters : all I aim at, is to show, that the: testimony of the senses, though sufficient to cumbince sober and reasonable men, yet does net so unewnin.... bly extort our assent, as to leave no ron ion sumicion or distrust.
Scc. III.-dis foundid epon testimony, is of a sill mire certuin nature, though in many cases omorued without zuwtering or distrust.
The third and last way of coming at truth is by the report and tesimany of others. 'This regards chicily past facts and transactions, which having no longer any existence, camot be brought within the picsent sphere of our olsemation. For as these whid never have fallen under our cognizaice, but by the relations of such as had sufficient opperinnicies of being infumed; it is hence pratent, thet all our knowlei!ye of his kind is wholly fomied upon the conceyance of testimony. But now, aithough this in many cases is a sufficient ground of assent, so as to produce a ready belief in the mind, yet is it liable to still grater objections than even the reports of expe-
rience. Our senses, it is true, on some occasions deceive us, and therefore they may possibly on others. But this bare possibility creates little or no distrust ; because there are fixed rules of judging, when they operate according to nature, and when they are prevented or given up to caprice. It is otherwise in maters of mere humen testimony. For there, besides the suppesition that the persons themselves may ave been deceived, there is a farther possibility, that ihey may have conspired to impose upon others by a fulse rejation. This consideration has the greater weight, as we frequently meet with such instances of disingenuity ameng men, and know it to be their int :rest in some particular cases, to dissemble and misrepreseat ti:e truth. It would, nevertheless, be the i:cishlit of folly, to reject all human testimony without distinction because of this bare possibility. Who can doubt whether there ever were in the world such conqueror's as Alexander and Julizs Casar? There is no a a solute contradiction, indeed, in supposing, that histhens may have conspired to deceive us. But such ai mirersal concurrence to a falsehood, without one conemithar voice, is so eatromely improbable, and s) wy u:dice what wsolly happens in the world, thei a wise men could as snon persuade himself to beliaie the grossest absuedity, as to admit of a suppretion :o renste from evely appearance of truth. Howe the fact: of himoy, vien well attested, are rudiy conbraced by the mind ; and though the eridence attindins, them be not sech as produces a necostry and intimble asstrance, it is yet atmantiy sufficer to justily our beiicf, and have hose without exusc, who upa the bare ground of posibitity, are for rijecting entirely the conveyance of textimony.

Sec. IV.—Science belongs entirely to that branch of knowledge which is derived from the contemplation of our Ideas.
Upon the whole, then, it appears, that absolute certainty, such as is attended with unavoidable assent, and excludes all possibility of being deceived, is to be found only in the contemplation of our own ideas. In matters of experience and testimony, men, we see, may frame pretences for suspicion and distrust : but in that part of knowledge which regards the relations of our ideas, none such can have place. For as all these several relations are either immediately discerned by the mind, or traced by means of immediate ideas, where self-evidence is supposed to accompany every step of the procedure, it is absolutely impossible for a man to persuade himself that that is not, which he plainly and necessarily perceives to be. Now it is to knowledge, attended with this last kind of evidence alone, that in strictness and propriety of speech we attribute the name of science. For science implies perception and discernment, what we ourselves see and cannot avoid secins; and therofore has place only in matters of absolute certainty, where the truths advanced are cither intuitive propositions, or deduced from them in a way of strict demonstration. And as this kind of certainty is no where to be found, but in investigating the welations of our ideas; hence it is plain, that science, properly speaking, regards wholly the first bewnch o! human knowledge ; that which we have said is devicei from a contemplation of the ideas in our own minds.
Sec. V.—Kur Knowledge of the real İxistcner of Objects not Inaitice.
But here 1 exipet it vill be asked, if science and demonstruiton belong only to the consideration of our
own ideas, what kind of knowledge it is, that we have relating to bodies, their powers, properties, and operations one upon another ? To this I answer, that we have already distinguished it by the name of natural or explerimental. But that we may see more distinct$1 y$ wherein the difference between scientifical and natural knowledge lies, it may not be improper to add the following observations. When we cast our eyes towards the sun, we immediately conclude, that there exists an object without us, corresponding to the idea in our minds. We are, howerer, to take notice, that this conclusion does not arise from any necessary and unavoidable connexion discerned, between the appearance of the idea in the mind, and the real existence of the object without us. We all know by experience, that ideas may be excited, and that too by a seeming operation of objects upon our senses, when there are in fact no such objects existing; as in dreams, and the deliriums of a fever. L'pon what then is the before-mentioned conclusion properly gruunded? Wiy, evidently upon this : that as we are satisfied our oggans operate dily, and know that every effect must hate a cause, nothing is more natual than to surpose, that where an idea is excited in tie mind, some object exists corresponding to the idea, which is the canse of that appearance. But as this conclusion, by what we have sien, is not necessary and unavoidable, hence there is no intuition in the case, bat merely a robabie conjecture, or reasonaile piestimption, grounded upon an intuitive truth. Sec. VI.- 1'oslate Coramty in ratural Fnowledge confined to wita: juills under cur immediate notice.
Again, when a piece of god is dissolved in aqua resiciu, we see indeed and own the effect produced, lut camoi be s.id, in strictness and propriety of
speech, to have any perception or discernment of it. The reason is, becouse being unacquainted with the intimate nainse both of aqua regia and yold, we cannot, from the ideas of them in our minds, deduce why the one operates upon the other in that particular mannei. Hence it is, that our knowledge of the facts and operations of nature extones not with certainty beyond t. e present instance, , i what falls under our immediate notice; so that in all our researches relating to them, we must pisceed in the way of trial and experiment, there beinc; here no general or universal irutic, whesen to iound ecientifical deductions. Eesale the solution of goll in aqua regia holds in one exper ment, we cannot thence infallibly conclude that it will hold in another. For not knowing upon what it is, i, either of the:e bodies, the the effect here ment ond depend, we hese no absolute cercinty in cay new experiment :e piopose to mal:e, that the objects to be applise one to motier have thet pacise texat and enstitution from which this soln-
 ies which go by the same n.... and 'are the same outwad apperance, are no: always, :o crer, exactH aline ia their powers and upertios. Is vain do they oiten seaci, ior those properies in one piece of antimony, whit, on formeroctions, they may lave fand in another; aid by this acans, to their no small matificuion, and themselves frequently disaperintcd, in very cosiy and promising experiments. Now have we any expens and positive a moneme, that the very bodies with which we hate fomerly made experiments, continue so exactly the same, as to afford the like appearances in any succeedine thia'. A thousand changes 'appon crey' moment in the natural woth, without our havins the leust knowledere or preption of them. An alcrand in our atmomete, the ap
proach or recess of the sun, his declination towards the north or south, not only vary the outward face of things, but occasion many changes in the human constitution itself, which we yet perceive not when they happen; nor should ever be sensible of, but by the effects and consequences resulting from them. And whether alterations analogous to these may not sometimes be produced in the frame and texture of many bodies that surround us, is what we cannot with certainty determine. Hence, from an ewperiment's succeeding in one instance, we cannot infallibly argue, that it will succeed in another, even with the same body. The thing may indeed be probable, and that in the highest degree ; but as there is still a possibility that some change may have happened to the body, unknown to us, there can be no absolute certainty in the case.

Sec. VII.-IVhat kind of Knowvledge of Body would deserve the name of Scicnce.

Had we such an intimate acquaintance with the structure both of aqua regia and gold, as to be able thence to discern why the one so operates upon the other as to occasion its dissolution; insomuch that from the ideas of them in our own minds, we could clearly deduce, that bodics of such a make applied one to another, must necessarily produce the effect here mentioned; cur knowledge vould then be sitentijizal, and stand ujon the foundation cither of intuition or demonstration, according as the perception was immediate, or attained by means of intervening ideas. In this case, therefore, having two standard ideas in our minds, whose relations we purfectly well know; wherever we found objects conformable to these ideas, we could then pronounce with certainty, that the application of them one to another would be attended
with the above effect: because, whaterer is true in idea, is unavoidably so also in reality of thins s, whene thinss exist answerable to these ideas. If it be tros. in iden, that a parelelogram is the double of a triunser, standing upon the same base, and between the same parellels; the same vill be true of every real triangle and parelledgram, that exist with the cond!ions hore mentionerl. We are likewise to olsueve, that the changes to which bodies are daily habe. could prodece no confusion or perplexity in natam know. er' \boldsymbol{x}, did it stand upon the foundzion ' a nemtio. ca. For in such a case, the powers atal porproties r.i oberts being wediced from the ilens of thea in a.i. own minds, word no otherwize be arphed to thinge, really existins, then as these things are tumd i, itectIy conformaije to our id as. Wiom, thenfere: alteration happened in ay body, as it wot ld by iai means differ from that stindurd idea wheree its iormer properties were seen to $\mathrm{C} \cdot \mathrm{O}$, we mat of course be sensible, that some suitable change roudd frllow in the properties themselres, and that its promers and operations, in regard of other bodies, woukd rut be i:t all respects the same.
Suc. VIII.-Elikrience the only foundation of Naikral Kinourldge.
But what is still more remaikube, we shon!!, upon this supposition, be able to determine the mutaral action and influcnce of bodies, without having recourse to trial or experiment. Had we, for instance, a perfect knoviedge of the intimate nature and composition of an animal borly, and of that particuine poison that is infused into it by the bite is iu vipci, so as clearly and distinctly to discem how they atw......ted one to another ; we might thence scientifical! weduce, without the belp of experiments, that the bite H 2
of a viper would so unhinge the buman fabric, and proince such fements and combustions in it, as must necessatil! le followed by a total extinction of all the vital functions, and leave thut admirable machine a mere liteless lump. But as such perfect and adequate itie:se of objects, and their mutual habtiudes one to another, aye planly beyond the reech of our persent haculties; i: were vain for us to think of improving natural knowlede by abstract reasoning o: scientitical deductions. Leperience is here the true and proper foundation of our jadecments, nor can we by uny other mans arrive at a discovery of the sercol powers and properties of bodies. LIow long might a man contemplate the nature of hemlock, examine the structure of its parts in a microscope, and torture and analyse it by all the processes of chemistry, before he could pronowace with certuinty the effect it wil have upon a human body? One single experiment lays that open in an instant, which all the wit and invention of men would never of themsclues have been able to trace. The same holds in all the otier parts of natural philosophy. Our discoveries rataing to clectricity, the powers and propexies of the load-stone, the ficice of gun-powder, \&x. werust sained by reasouics, or the consideration of our wetract ideas, but by me ns of experiments made with the bodies themselies. Hence it happened, that white the philosonhy of Arisuct! prevailed in the schools, witich dealt much in metaphysical notions, oucelt qualities, sympathies, antipathies, and such like woils withoiit mcaning; the knowledge of nature was at a stand: because men pretended to argue abstrua tedly ahout the things of which they had no perfect and aderpate ideas, whereon to ground such a neethou oil reasoning. But now in the present age, the we move retumed to the way of trial and experi-
ment, which is indeed the only true fomolation of nat ural philosophy ; sreat advances have aiready been made, and the prospect of still sreater lics betore us. Sce. IX.—Diffrancr between Scientifeal and insural Anisaituct
And thus at lenstin we me: sufficiently understand wherein the peoper diference lies, between stiontifcal and natural knownde. In mutters of siane we argue from the ideas in our conn mincis, and the connexions and relations they have ctee to arother. And as wien these relations ate set clatidy and phein.ly before us, we camot avoid peaccising and waning them, hence all the truths of this class pwitice al,solute certainty in the mind, aisd are athended with a necessary and unavoidable assent. It is otlarviee ia the case of matural knowledge. Intuition and inward perception have here no place. We disce:a not the powers and properties of these cbject: that surround us, is any viex and compatingin of the iders of them one with ancther, but merely by erperiace, and the impressions they make on the sonses. But now the reports of sense happening in some instances to deceive us, we inate no infallibie assurance that they may not in others; which wetlens not a little the evidence attending this kind of lawledge, and leaves room for suspicion and distrust. Ner, what. is yet more consideribic, as we have no pertect and adequate idvas of bodies, repaseming their jamend constitution, or layingoper the foundation upon which their qualities cepent, ve c.nn ferm no miversal proprositions about ticm, apheliceje with centancy in all particular instances. Fise, vee say, dissolves motals. This, though eapos.dindelinity, is, howerer, only a particular thits, por con be catintiod with asolnte assurance, beyond the sereral trials miede. The re:-
son is, that bear ignorant of the inward frame and composition bcth of fire and metals; when objects are offered to us undir that name, we have therefore lof bitive ceramity that they are of the very make a \quad dicuilic, recanisite to the success of the exper:man. The then may indeed be probable in the hasest dexice; but for want ef standard and setted des, we can bever arive at a chear and absolute percepitin in tike case.
Sec. S——We manor of Recononing in Natural Knowlus.
As nevertheless, it is cerain that many general concinsom in matual phitesupy are embraced withcht webt or hesitutign ; nay, that we form most of the sclimes and parsitits of lie upon that foundaton ; it will manally be askat here, how come we if this asmatac, i answor, not scientifically, and ii the vay of aict domonstration, bet by matory, aid an minction of comements. We dirtanuish fire, for instance, by sacin of its qualities as lie more immdiow open to the nuice of the senses; among witch!at and heat are the most considerable. Examining stil! faver into it, ature, we find it likevise puck of the power of dissolving metals. But this new peraty not haring any necessaiy con1, win the we rat \quad, with those nther qualities 1.Y when fee is surn sise, we canot therefore arge with cortung bai wemer light and heat, $\because c$. we, the porar ol diswima metals co-evists with 1hem. Wis not til afur we have tried the thing in
 that x - begin th preme thore may be realy some wh concein, dwash our ricus are too soort and imperict to cincuta it. Efuce we are led to frame a seineti concesion, arguing irom what has already
happened, to what will happen acein the the rases, insomuch that where we meet win ail tie ofine prenenties of fire in any body, we have n^{\prime} t the last cicio. :but that upon trial, the power above men all be found to belong to it also. This is cable less.niing by analogy ; and it is, as we see, fandel ticIy upon induction, and experiments made with :ticular objects; the moe precise and aceatio ar ideas of these objects are, and the senterne varety of experiments upon which we buikd 0.1 reas : the more certain and undenbete will the conctosons be. 'ifs in this manner we arrive at all the sexam truths of natural knowledge : as that the bite of a ce:-
 load-stone points to the north; that gravity belous unitersally to all botila; and imumarabe mers, which, thgugh not capable of strict demuas...ti, \cdots, are nevertheless as ratily embracel upon the fonclation of analogy, as the mos obrious and inwatie judgments; nay, and become fixed and stency pitaciples of action, in all the aims and pursuits of life.
Sec. XI.-How evien Sritmifical Reasoning may be intontererd into it.

And here agan it is patir ulaty remakerse, that having asconcumed the gencral properties of things ! anaby, if we proceed next to establim chese as :tulata in philosophr, we can, upon this fonmation, build strict and mathematical tenomstations, and thereby in roduce scicnifinu! sasomisys hato nounal
 detemaned the laws of maty by arity of epouiments, and lyying it down as a pricist, that it opcrate: accorting to thave haws through the whole system of matice; has herece, in a tray of situt demonstration, deduced the whote hecory of the hearen-
]y mons. For granting once this fostulatum, that sainty belonss universally to all becties, and that it ates arcordine; to their solid content, decreasing witi the distance in a given ratio ; what sir isatuc has determined in regatd to the plantary motions, follows from the bare consideration of our own ideas; that is, necessarily and scicmitifcully. Thus hitevise in pftics, if wie lay it down as a principle, that light is propasaued on all sides in right lines, and that the rays of it are rebicted and refracted according to certiin fixed invariable kaws all which is known to be true by caperience; we can upon tinis foundation establish mathematicaiiy the thery of vision. The same happens in mohse ics, hydrostatice, pneumatics, sc. where from fosthlata ascertained by experience, the whele thecry relating to these branches of knowled. fo follows in a way of strict demonstration. And this I the to be the reason why mary parts of natural piowophy are honored with the name of sciences. Niot that they are ultinateiy founded upon intuition; but that the several principies peculiar to tiam beitur assumed upon the foundation of experience, the theory deduced fion these principles is coublished by scinifical reasoning.
Sec. KII.—Yet still Exherionccis tie ultimate Ground cf our Ascont.
Could we indeed discern any necessany connexion between grant:; and the known essential qualities of matice, bimomich that it was inseparable from the rery idea of it ; the whole theory of the planetary moions would then be strituy and properly scienifical. 'on seciar, from the notion of gravity, we can demonstratively deremine the laws that bodies will observe in their revolutions, in any known circumstanccs; if the circumstances relating to any system of
bodies can be traced, and gravity is supposed esscntial to them, we can then, from the bare considelation of our own ideas, deduce all their mors.ens and phenomena. Now this is precisely what sie Istac has done in reparal to our planctary system. Ile tas detembeflue circumstanes of the bodies that compose it, in respert of situation, distance, magnitucie, \&e. all which being supposed, if they are cosentic!lyactuated l y graisty, their sevcril revolutions and appearances must be equaty enscatial. Lit as the principle of sravitation cannot be arcomted tur by the known qualities of natior, ncither can ins thery be immediately deduced firm the resa oí bode: and therefore, tho' our reasemiag in this part of philosephy be truly scientifica, yet as the mindie upa which that reas ning is grounded, is chereai from experience, the theory itself mast needs minmaturest upon the same foundation. And thus even the doctrine of the planetary motions, though seemingly extidished by matisenatical rasonem, tale $y=t$, in strictness and propricty of speech, under the head of naturel knowledge. For in this precisely consits the diffe:ence between scimac, ated what we call the pinitosophy of nature; that the one is grounded ultimately on intuition: the other on experience. As the observation here made holds alike in all the other buache; of matual philoscphy, into whicia scion jeícal canting has been introduced; it is hence apparent, theit they are not sci:inces, in the strict and proper sense of the woid, but conly by a certain latitude of eapression common enough in til languages. It hat we hate therefore said abov, relating to the impossibility of improving natural knowledge, ly scichtifical suanstions, is not contradicted by siay tims, admend in this section. We there neme defoctims sramen 1 ultimately on hatution, and ditied from a consitu-
attinn of the abstact ideas of objects in our own minds; not such is flow from fostulata, assumed upon the fombution of experience. For these last, as we have abeaty deserved, are not truly and properly scientificai, but have obtained that name merely on account of 1.1. way of ecoming in which they are collected from the stiversulata.
Sec. :IIL.-The manner of Reasoning in Historicle Kinowlalse.
If then absolute and infallible certainty is not to be obtaned in natural knowledre, much less can we expoct it in historicle. For here testimony is the only round of assent ; and therefore the possibility of our being deccivect, is still greater than in the case of exberience. Not only he who reports the fact may himself have formed a wrong judgment; but could we eren get over this scruple, there is still room to suspect, that he may aim at imposing upon us by a false narration. In this case, therefore, it is plain, there can be no intuition or inward perception of truth, no strict and absolute demonstration, and consequently moscience. There is, however, a way of reasoning even here, that begets an entire acquiescence, and leads us to embrace without wavering, the facts and reports of history. If, for instance, it appears, that the historian was a man of veracity; it he was a competent judge of what he relates; if he had sufficient opportunitics of beinginformed; if the book that bears his name was really written by him ; if it had been handed do:n to us uncorrupted; in fine, ii what he relates is probable in itself, falls in naturally with the other events of that age, and is attested by contemporary writers; by these and such like arguments, founded partiy on criticism, partly on probable conjeclure, we judge of past transactions; and though they
are not capable of scientifical proof, yet in masy, cases we arrive at an undoubted ascurace of tican. IG as it is absurl to demand mathematical demonstation in matter; of fect, because they admit not of th. : kind of evidence; it is me less so to chomed of thet. reality, when they are pored by the best aymanto their nature and quality will bear.
Sec. XIV.-Sceiticisms nercessarily exciuticd from mattor of scimare;
And thus we sec, in the several divisons of tame, knowledg, linth what is the ground of jud fiai, and the manner of reasoning, permiar to each. In stien-
 ideas of the mint, and those "dations an! comerions they have one with another; our froment, aio grounded on intuition, and the mamer of revonin:; is; by demonatratioir. In atatual knowlulper repecting objects that exist without is, their powni, properties, and mutial operations; we judge on the somatation of experiense ani resson by induction and analogy.Lastly, in historical mandas, which is chiefly conversant about past facts and transactions, testimony is the ground of judgment, and the way of reasoning is by criticism and frobable ronjecture. And now I think we are able effectually to overthoow that absurd kind of ncepticism maintained by some of the ancients which brings all propositions upon a level, and represents them as equally uncertuin. What gave the first rise to this doctrine was, caprice of certain philosophers, who observing that the reporis of sense and testimony were in sonc instunces deceitful, took thence oc. casion to suppose that they might be so likewise in others, and themeupon established it as a principle, that we ought to doubt of every thing. But even with respect to this doubting, we are to observe, that it can
in furt e:itend no furthe:, than to matters of experiner and traimse, beciog totally and necessarily exchated fiom scicn!feal wowledge. When iceas bate the rappearace in the understanding, it is imposcibe for us to cume of their being there. And When the metuions of fany of our ideas are chanly and bionell; disccmed by the mised, either immediate1s, which is inninch, or by means of interventas i Eeas, which is domasiruian ; it would be in vain fur wis themenour to pew onde ouselves that that is no, whed we phatiy and aravodably perceive o beIn his case, the done, we cannot withord cur a.sene; truth fuces its way over all opposition, and heals in with so mach light upon the mind, as to besit abolute and infulnbe certime.
 of erimerionce wad tasimatio.
Taded in natural and histoical hawlodere afllicism may häc place; becuse, as we have said, there is a possibiity of our beime deceived. But then it is (1) be obserect, that a bare possibility is a very weals grosud wieren to istera any philesophical tenet. It is jowsible, that Grat Bixain may be swaiowed up by the sea beote w-morow; but I believe no man is on this account incimed to thine it with be so. It is rossible the whole human mace may be extinsuished the next instomt ; yet this posesibity creates ifs apprehension that the thins itsen will really haplem. In a word, we ought to jube of things by the proofs brought to support them, not by bare abstract possibilities; and when we have all the evidence, they are capable of, that alone is sufficient to convince, thourh perhaps the contrary canct be shown to imply a contradiction. Will ainy wise and considerate mancubl: whether there be such a place as Affica,
because we cannot prove, by any necessary armment, that it is absolutely inpussible all the relations conreming it should be ituse ? Strict and rierewos demonstrations belong not to history, oir the phawsund of mature. The way of reasoling, in thes brenters of knowledse, is by aroments drawn from eso. rience and tesimony. And when the uable of any proposition is in thi, maner subicionty ascertined, insomuch that it apers with all the evidence it is rapuble of, and we lave as great reasron to belese that it is, as we could fosibly have, suplusing it wien, is bitt this upon the matter as setisfucis:y as denos:strution? It must be cwned, intert, there is no inward perception in the case ; and therefore our asscht canaot be said to le necessary and unavoidable.Wen may in these matters be scr/fics, if they please ; and if tincy are resolved upon it, it is in vain to con:tead with obsinacy and preversencss. I camme, loswerer, but observe, that if they will really act up, to thair own prieseiples, and treet all things in wood cune t as bacertan, thet admit not of sirict scientifical pous, then zonduct imust be the very madness oiffily. Noman candenonetrate mathematirally, thai poison has not been conicyed into his meat or drink. And if he will be so very catious as not to taste of oithor, tiil he has reaclied this despee of certanty, i know no other remedy for him, but that in great rewity and wisdom he nums die for fear of death. Whe truth of it is, the most zealous patrons of scefticism, after ail their pretended doults and scruples, find it yet conveniont to behave, in the several occurrences of life, as if they sure eatio ceratit to the reports of sense and testinony. lhey will no more venithe upon a dose of arsenic, or was: into the midst of a glowing furnace, than if they serily beliewd death would be the consed!!ene. And though in this it nust be
owned they act discreetly, yet have we hence at the same time a very convincing argunent of the absurdity of these notions they affect-to entertain. In reafty, can any thing be more ridiculous, than to sive into a scheme of thinking, which we ind ourselves bucessiatec to contanict in aimost crery occurrence a ne? ? Omaions are not to be taken up out of caprie ant funcy, but to serve as principles of action, and standeg rates of behaviour. When they answer not this mate purpose, they are unavailing and fruitluss, and an cbetnate adherence to them, in spite of reveated adnomitions of experience, justy deserves to be branded in fuly. IVe shell not, therefore, atrempt to malij!y arguments in a matter so obvious, it sufficiently answering our present purpose to have showr, that dotbtiteg and uncertainty have no place in scientifical knowisege, and that eren in matters of listory, and the facts of nature, and undistinguising scepticism would be in the highest des, ee absurd.
Sec. YVI-Witnce afillicable to the Concerns of Iiuman Lift.
But here, perhaps, it will be asked, Why all this mighty noise about science, when, even according to the present account, it seems to be so very capricious and arbitrary a thins? For seeing it is wholly confined to the consicteration of our ideas, aid we are at libery to fame min combine those ideas at pleasure, this mateed opers a vay to castles in the air, of our own building, to angy chimerical and lanciful systems, which men of warm ad lively imaginations lowe to entertain themselves with, but promises little of tiat knulege which is worth a wise man's regard, and respets the gicat ends and propoes of Jife. Where is the advanage of barely contemplating our ideas, and twing theirseveral habitudes and
relations, when it is in truth the reaily of thines that we are chiefly concemed to know, and thuse respects they bear to us and cne another? ' 'o this I ans:nc: that if indeed our jdeas no way regarded things themselves, the haowied;e acquired by their meens wond ie of very little conserpuence to human life. Beat since, as we have alrcady observed, whatero is true in idea, is unavoidably so also in the reality of tinings, where things exist abswerable to these ideas : it is apparent, that by copying our ideas with cart from the real objects of neture, and framing them in a conformity to thoje conjunctures and circumstarces in which we are most likely to be concened, a way is laid open to discoveries of the rreatesi importance to mankind. For in this case, our several reabomines and conclusians, hoding no less of the objecis ${ }^{2}$ tememselves, tian o! the asas by which they are repocsented, may be therefore applied with certainty to t..e.e. objects, as often as they fall under otir notice. Thes mathematicians, having formed to themselves ideas of cones, cydinders, spheres, peisnes, \&c. variousf compare them twrether, examian thoir seval prepeltics, and lay down rules by which to calculate their relative bulk and dimensions. But now as bodies answering in figure to these ideas come frequently under our observativa, we have l: \because this means an opportunity of applying mathemaical lnowledge to the common concenis of ile; and by determining p:ccisely the quartity of extension in each body, can the betier jurge how far t!ey will answer the purposes we have in vew. The same thing happens in polities and morality. If we iorn to ourseives'cicas of such communities, conncxions, actions and conjunctures, as do or may subsist among manlind ; all our reasonings and conciasions will hicti ropect real life, and serve as sicady maxims o" be:atiour in the ser-
eral circumstances to which it is hable. It is mot, therefore, encugh that we set aboit the consileratora of any ideas at rombon ; we nus' further take care that those ieces truly regord things themseives; for athourh kownetse is awous ceman, when dermed from the cotemplation of cior onn ideas, yet it is then onty useful and wothy ould regaci. When it aspects ifeas taken from the rewi obiert of nature, and strictiy relace! to the cericems of haman hife.
 i.ining our jacus;

Having thus shown that there is such a thing as scianc, fixed and ascertained the bounds of it, and explained its sreat use and importance in the affairs of mankin: ; it now remains that we lay ciom the rules of method peculiar to this bianch of howledge, and give some acoomt of the mamer in which that corwaty and consction which are inseparable from it, may ie mosi naturally and entertally produced. Whenc, as we have said, remais wholly the abstract ineas oi demina, and the rchations they have one to wother. The seat secret, thewfore of attaining it ias in so mangeg and conducting our thoughts, as 1hat hase seveal relations may be laid cona to the ricw of the biaderstanding, and become the necesstiry and anavodible objects of our perception. In o!der is this we must make it cua first care, distinctly to frame and wexe the ideas about which our enguisit are wiocmpeyed. For as the relations subsissing betwent them can io oihorwise be discerned, than by omang them one with another-and as this crmaramin necessarily sopocses that the ideas themscies are actually in the mind, and at that very ante ancior cur inamediade in ibection-it planly follows, that ail sekiow must bern with fening and os-
certaining those ideas. Now ow irtas, as has been already observed in the first book, come wii very naturaily within the division of simate and r an, 4% Simple idan are cecited by actual inaressions mele upon the understandins; and as they eaist moker one unform abpearace, without raniety or compent: n, are in no duager of being mistake or confonnted one with anotier. It is otherwise in our comiles ronecptions. For these consistiog of man simple ideas joined tofocher, sreat care mest be taien, that we acquaint ontrolves with the true momer condined, and the crie: and maner of their combera-
 tices. kepu disthet and invariake, bisomuch that in. all our several riews of then, thoy ow have bee
 resperis. ficre, thereior, poraty spelims, the art ohnowlege besins. For altagen we hand it asy eionert to homa and seitic our iticas, where they consist of but iow simple percotions; yet when they grow to be very comphated, it witen legures great address and mana, want to thow them inw such vicws as may preveat that confusion which is ant to arise from the jrint consiceration of a muntincy of riterent obiccts. Nence that ; matation in the compostion of our ideas which we have capisined at hatse in the last chapter of tie firstbos. For as they are by this nucuns firmed into cimerent owders, and these orders ame continuaty one ond of atotion ; the undertandines, by taking them in a just succession, grawelly nonits to the highe st conceptions, and can, at any time, with incredible ease and expedition, brins all their paris disimetly into vicw. To know, therefore, the full value of this contirance, we must attentively conbider the strict conpexion that obtains between the sewiad chases of cur weren when
disposed in such a series. Every succeeding order is formed out of those combinations that constitute the iank next below it. And as in advancing from one decree to another, we are always to proportion the number of notices united, to the strength and capacity of the mind ; it is apparent, that by such a procodure, the ideas will be thoroughly ascertained in every step, and however large and bulky, lie yet fairly within our grasp. This obviously accounts for that won levinl clemess of apprehension, which we ofter experi ace within ourselves, even in resgerl to the most compitated conceptions. ini though the multitude of parts in many cases be great, I may say beyoud belief, yet as they have been all presiously formed into separate chesses, and the classes themsclos distinctly settled in the understanding ; we find it cast, by such a serics of steps, to rise to any ira, how compiex soever, and, with a single glance of thought, to embrace it in its full extent.
Sec. XVIII.-And communicating them by means of Definitions.
But it is not enourg that we barely form ideas in cur own minds : we must also contrive a way to render them stable and permanent, that when they disappear upon cailing off our attention, we may know how to retrieve them again with certainty. This is best done by words aud descriptions, which serve not only to subject them to thei: own review, but also to lay then open to the percentions of others. And indeed as one of the main ends of reducing krowiedge into the form of a science is, the easy and adwantageous communication of truth ; it ought always to be our first care, when we set aboat unfolding our discoverics, to exhibit the several conceptions to which they relate, in a just and accurate series of defini-
tions. For till we have distinctly transferred our ideas into the understandings of those to whom we address ourselves, and taught their connexion with the appropriated sounds, all our reasonings will evidently be without effect. If men comprehend not the true import of our vords, and are therefore led by them io bring wrong ideas into comparison, they can never sure sce connexions and habitudes that really subsist not. But if, on the contrary, the temas we use, excite those very conceptions in cisers, which they donote in our orn minds; then, as the several relations pointed out will lie fidy ofen to view, they must needs be discemod with :reat readinons and ease, and stamp the character of curtiaty upon all our deductions.
Sec. XIX.—The names of simple Ilius constitute the original and etementary terms of ianguati.
Thus we see that the method of science be; ins with unfolding our ideas, and communicating ticm by means of definitions. And here it is of great importance to observe, that there must be in all lenguages, certain original and elementary names, whence our descriptions take their first rise, and beyond which we cannot tace the meaning and signitication of sounds. For since our very definitions are made up of words, if we stippose not such primitive and fundamental terms, into which they all resolve themselves, and where they at last necessarily terminate, it is evident there would be no end of explaining. Now it is peculiar to our simple ideas, that they cannot be originally excited by words, but must always mule their first entrance into the understanding by the actual operation of objects uponit. When, therefore, in a series of definitions, we arrive at the names of these ideas, 'tis plain we can push our descriptions no forK 2
ther, but are necessitated to suppose, that the perceptions themselves have already found admission into the mind. If they have not, definitions avail nothing ; nor can they any other way be impressed upon us, than by betaking ourselves to the several objects in which the power of producing them resides. Hence it appears, that the primary articles of speech, into which the whole of language may be ultimately resolved, are no other than the names of simple ideas. These, we see, admit not definitions. It is by expesence and observation, that we grow acquainted with t'eir meaning, and furnish ourselves with the perceptions they serve to denote. For finding that those in whose society we live, make use of certain articulate senods, to make the various impressions of objects, we too annex these sounds to the same impressions, and thus come to understand the import of their words. This way of knowledge takes place, in regard to all our simple ideas; but in many of those that are complex, as they are the mere creatures of the understanding, and exist no where out of the mind, there are, of course, no real objects without us, whence they may be originally obtained. If, therefore, they could not be communicated by descriptions, we should be left wholly without the means of transferring them into the minds of others. But happily it so falls out, that all complex conceptions whatsoever may be distinctly exhibited in deinitions. For as they are no more than different combinations of simple ideas, if these simple ideas have arready got admission into the understanding, and the names serving to express them are known; it will be easy, by describing the crder, number, and peculiar connexion of the notices combined, to raise in the mind of another the complex rution reselling from them.

Sec. XX.-A Knowledge of these previously suhthosed in handling any Subject scientifically.
Since then it is by simple ideas and their names, that we unfold all the other conceptions of the mind; it manifestly follows, that in handling any subject, scientifically, we must always suppose those to whom we address ourselves, periously furnished by experience with these first principles and elements of knowledge. Nor is this by any means an unreasonable postulatum: because the simple ideas that relate th the sciences, being few in number, and coming rey often in our way, it is hardly possible we should be unacquainted with them, or not have frequently heard their names in converse with others. What principally demands our care is, to apply those names aright and according to the strict use and propriety of the language in which we write. 'Tis selcom allowable to chan;e the signification of words, especially those by which we denote simple ideas. If, however, such a liberty should at any time be found necessary, we may still make ourselves understood, by mentioning the idea under its common name, and signifying its connexion with the newly appropriated sound. Indeed it sometimes happens, that new and unusual ideas of this kind are to be taken under consideration, which we must therefore express by terms of our own invention. In this case, as the ideas themselves cannot be laid open by definitions, we refer to the several objects whence they may be obtained; which though it excites not the perceptions immediately, yet sufficientiy answers our purpose, by putting men in a way of being furnished with them at pleasure.
Sec. XXI.-7he order and connexion of our Definitions.
This foundation being laid, the communication of our complex conceptions by definitions becomes both
easy and certain. For since the ideas themselves are formed into different orders, and these orders arise continually one out of another ; nothing more is recuinced on our part, than to observe a like method and gradation in our descriptions. As, therefore, the first reder of on compound notions is formed immediately tion simple ideas; so the terms appropriated to this uader must be defined by the names of these ideas. Ani as the second and all the succeeding orders arise cont.inalily out of those combinations that constitue the chases bitat below them, so the definitions corresponding to these different orders gradually take in the terms by with the severai inferior divisions are rowhanly and successively expressed. In such a series of cicsmiptions, it is evident, at first sight, that irothing can be obscure and unintelligible. For as it begins with the names of simple ideas, whose meaning is supposed to be known-and as in every order of definitions, such terms only occur, as have been picriously explained in the preceding distributions -by adrancing regularly from one to another, we rradually furnish ourselves with whatever is necessary towards a distinct conception of all that is laid before us. Nor is it a small advantage attending this disposition, that the several ideas described are hereby excited in tie understanding, in the very order and inamer in which they are framed by a mind advancinge uniformly from simple to the most complicated nsticle. Hence we see distinctly tae varions deperterce of things, and being put into that very tran of tininking which leads directly to science and rematy, are drawn insensibly to interest ourselves in the pirat ; insomuch, that while in fact we do no more thein flow a gude and condector, we can yet hardly forio ir funcying ourscives engaged in the actual exercise of deductis cue part of knowledge from another.

Sec. XXII.—Of the immediate and intuitive Relations between our Ideas.

When we have thus fixed and ascertained our ideas, and distinctly exhibited them in defnitions, we then enter upon the important task of tracing their several habitudes and relations. In order to this, we set abour comparing them among themselves, and viewing them in all the variety of lights, by which we can hope to arrive at a discovery of their mutual agreement or disagreement. And here it happens, that some relations forwardly offer themselves to the notice of the understanding, and become the necessary objects of perception, upon the very first application of our ideas one to another. Those are, therefore, immediately owned, and constitute our hrimary and intuitite judgments, being attended with the highost degree of evidence, and producing absolute certainty in the mind. But in many cases, the connexion or repugnance between our ideas, even when true and real, comes not yet within our immediate view, but requires search and examination to discover it. On this occasion, we have recourse to intermediate notices, and if by means of them we can muster up a train of evident and kiown truths, which, disposed in a regular series of argumentation, lead at last to a conclusion expressing the relations we are in quest of, the proof thence arising is called demonstration. Now as the conviction attending dimonstration, is no less necessary and unaveidable than that which proceeds from iniuition ; it evidertly follows, that whether the relations between our ideas are immediately discerned by the mind, or whether they are traced by means of intervening perceptions, in either case we arrive at science and certainty. This, lowever, is particularly to be obsetved, that the more remote and distant respects, being de-
duced from such as are obvious and self-evident, the propositions expressing these last demand our first notice, and ought to be previously established, before we enter upon higher investigations. When, therefore, in the method of science, we have finished the business of defnitions; it must be our next care, distinctly to unfold in propositions, those immediate and intuitive relations, which are necessarily seen and owned by the mind, upon the very first comparing of our ideas one with another. These propositions have obtained the name of first princifles, because, occurring. first in the usder of knowledge, and being manifest of themselves, they suppose not any frior truths in the mind, whence they may be evidenced and explained. It is not needful to enlarge here upon the necessity of circumspection and care, in settling these primitive and fundamental perceptions. For since the whole superstructure of our knowledge rests ultimately upon them, it is evident at first sight, that a mistake in this case must at once overturn and annihilate all our futire reasonings. But having already expiained the nature of these propositions in the second book, unfolded the notion of self-evidence, and taught the manner of distinguishing between the truths of tilis class, and those that are demonstrable; we shall, for the present, wave any farther consideration of this subject, referring the reader to what is there advanced, if he desires fuller information.
Sec. XXHI.-Of the aftlication of Self-evident truths. in demoisstrating such as are remote und distunt.
The first and more immediate relations of our ideas being thus pointed ult, our next business is to investigate suen as are remote and distant. And here it is thiat we have occasion for intermediate notices, and a skilful application of intuitive truths. But thoush
-self-evident propositions be the ultimate foundation of our reasoning, we are not, on that account, to imagine, that the art of improving knowledge lies in assembling, at random, a large and compre ersive stock of these. Even general princifles, considered by themsclves, avail but little towards the investigation of truth. They are, indeed, useful as me lia of certainty, by preserving the cvidence of our reasonings distinct, which never fail to convince, if, being pursued to their source, they are found to resolve the mselves into, and ultimately terminate in these pricipies. But when we set about the increase and enlaryement of science, far other helps are required. ion leve the whole secret consists, in devising and sibgling cut such intermediate ideas, as, being compared with those others whose relations we encuire after, may furnish out a train of obvious and known truths, serving distinctly to investigate the said relations. Euciid, in the first book of the clements, has demonstrated, that the three invoard ungles of a triangle taken together, are equal to two right angles. The reasoning, by which he establishes that proposition, resolves itself into this general principle: things equal to one and the same thins, are equal to one another. Will any one, however, pretend to say, that a bare consideration of the principle itself led him to that discovery? The merest novice in mathematics would, upon this supposition, be equally qualified for the business of invention, with one that had made the greatest progress; inasmuch as these general principles of the science are commonly alike known to both. But the truth of it is, Euclid, having found out angles, to which the three angles of a triangle, and two right angles, being compared, were found severally equal ; thereby ascertained the proposition in question, by showing it to terminate in the above axiom, theouh feriaps the
axiom itself was never once thought of, during the whole course of the investigation.
Sec. XXIV.—Reasoning, though resolvable into general truths, rests immediately upon particular selfevident frothositions.
And here it may not be improper to observe, that thoush it be usual in ruaconis, when we arrive at any particular self-evident proposition, to refer to the geneial axiom under which it is comprehended : yet is thot this done out of absolute necessity, of for the suse of any additional conffrmation. All intuitive trut's, whether general or particuar, standing upea tie same foundation of immediate perception, are neressarity embraced for their oun sake, and require no mutual illustration one from another. Wita, therefore, we have found, that the three angles of a triangle, and two right angles, are severally equal to the angles formed by one right line standing upon snother, we thence immediately discern their equality between themselves, independent of the general axiom into waich this truth may be resoived. Nor do we in reality refer to that axiom, by way of evidence and proof ; but merely to show tine coincidence of the example under notice, with a previously-established general principle. The same thing happens in all other demonstrations whatsoever, which, terminating thus in particular self-evident truths, are therefore of themselves sufficient to certainty, and acquire not any new force by being ultimately referred to general maxims. This I mention here, to obviate a common projudice, wicnce many are led to imagine, that futhenar inimive propositions derive their evidence from those that are general, as being necessarily included in theni. But since they both stand upon the same foundation of certainty, and are admitted in con-
sequence of immediate perception, they have therefore an equal claim to self-evidence, and cannot be made plainer by any mutual appeal.
Sec. XXV.----Particular Setif-vident profositions on called here, in ofthosition to gencral principles.
As, however, it is usual in the method of science to lay down certain general principles by way of foundation for our future reasonings; some will perhaps object, that this seems to be a needless precaution, since demonstrations may subsist without them, and commonly terminate in particular sefferident tuths, peculiarly connected with the sabiect under consiteration. In order, therefore, to give a distinct idea of the true design of this previous stip, vie shall begin with observing, that by the particular peopusitions in which demonstrations terminate, must we be understood such as are so, accordiner to the strict definition of the word, or in opposition to universals ; but cmly confined and limited truths, when compared wiht others that are more general. Thus the proposition, circles, equal to one and the same circt, are equal betruen themselves, is, in strictness and propricty of speech, universal, because the subject is taken in its full extent, and the predicate agrees to all the individuals comprehended under it. We here, notwithstanding, consider it as only a particular truth; because it is of a very limited nature, when compared with the general axiom mentioned above : things c gual to one and the same thins, are equal to one another. For this not only extends to all the various species of figures, but takes in every object without exception, that comes under the denomination of quantity.

L 2

Sec. XXVI.---General Princifles serve, first, to Contract the bottom of our Reasoning.

This point settled, it will easily appear, that the method of premising general principles in the sciences answers these two great and valuable purposes. first, to contract the bottom of our reasoning, and bring it within such bounds as are sufficiently accommodated to the capacity of the mind. Foi demonstrations being carried on by means of intermediate ideas, which must always have some peculiar connexion with the matur in hand, the particular self-evident propositions in which they terminate, are almost as various as the subjects to which they reiate. Thus in investigating the equality of different objects, whether angles, triangles, circles, squares, \&c. the intuitive truths, on which the proofs rest, always regard the particular species, and may be therefore multiplied, in $\dot{d}^{\prime} f i n i t u m$, as \wp well as the species themselves. But now it is remarkable, that all these several truths, numerous as they may appear, are yet reducible to this one genural principle already mentioned : things equal in one aid the sume thing, are equal to one another. The same observation will be found to hold in other parts of humian knowledge ; insomuch that though the particular thuths, on which we bottom our reasonings, are reaily innumerable; yet may they be all, without excenton, riscived into a very few general maxims, and thereby brought readily within the compass of the understandirs. When, therefore, we begin with premising these general truths, and as we advance in science, the care universally to resolve our demonstrations into them; this must needs add a wonderiul clecrnes: and perspicuity to our reasonings, and by establisiag them upon a foundation previously admiter., and of whose strength and firmness we are
abundantly satisfied, give them that irresistable force and inlluence, which serves to produce absolute certainty. Nor can we possibly imagine any thing more elegant and beautiful, than thus to behold knowledge rising from a firm and fathomable root, bearing its head aloft, and spreading forth into innumerable branches of science; which, though variously implicated and entangied, and stretching to a vast cstept, yet by their union in one common stock, derive thence so sure and stable a support, that all the assaults of cavil and scepticism are not able to destroy or loosen their comexion.
Sec. XXVII.---Secondly, to ascertain the Justness of it with more Ease, and less Hazard of Miocairu's'.
But, secondly, another purpose served by general principles is, that they enable us with less fatigue and labour and less hazard of miscarriage, to satisfy ourselves as to the justness of those reasonings by which science is established. For since demonstrations, when pursued to their source, terminate always in particular intuitive truths, which are therefore the u:timate foundation of certainty; it greatiy improves us, to iewere, the: we receive not any propositions under this name, u:til we have distinctly setticd them in our own minds, aid attained a full and clear perception of that self-evidence, on account of which they are whinitied without proof. But now these propositions being many in number, and differing according to the nature of the subject about which our researcies are employed; it must greatly perplex and retard our reasonings, were we to check ourselves every time they occur, in order to examine them by the rules of first principles. Nor is it a matter of slight corsideration, that in the heat and lurry of demonstrating, while the mind is advancing eagerly from one discov-
ey to another, we should be often tempted to pass them over hastily, and without that attention their importance requires ; which must expose us to many errors and mistikes. These inconveniences are efteroualiy prevented by the method of premising senfal truths: because mon referring particular proposations to them, as the connexion is obvious at first ingh, and commot possibly csape our notice, the evidence is discemed to be the very same with that of the principles to which they belons. And thus by a bure reference, without the trouble of particular eximmations, the grounds of reasoning are ascertained, and our demonstrations found ultimutely to rest on maxims mevicury established.
See. XXVIII...--Of the manner of linking frotositions tos: her, in ordar to the forning of lisidimate demonstutums.
Having explaincd the use of general principles, shown them to be the great media of certanty, and fourd, thet in order to eniarge the bounds of science, we must have recourse to intermediate ideas, as by means of them we are furnished with the several previous trubls, of which reasoning consists; it now remains, that we enquire in what manner these truths are to be disposed and linked together, towarts the funing of jut and legitimate demion traters. We lave sen afred", in the pioceding book, tiat syllowom, drant ap ace, rijers to the rutes there estab-
 therefore evdent and allowed truths are disposed ia
 that condmon is necescamy truc and ratid. And shoce in every geminc shbegism, if the premises are tinc, the conchion must need; be true; it manifestiy follows, that the conclusion already gained, being
now a known and established truth, may be admitted as one of the premises of any surceetins syiossm, and thereby contribute towards the obtaning a new conclusion. In this manner may syilosisms follow one another in train, and lead to a successive discorery of truth; care being always taken, that the premises, in every step, are eilher salferident poponitons, or conclusions previously cot.rblished. And indeed the whole ant of demonstrating hies in this due and orderly crenbination of our syl!egisms. For as by this means all the sceeral premises made use of are manifestiy true, all the several conclusions mist be so too, and consequently the very last conclusion of the series, which is therefore said to be llmonstrated. The same order is to be observed in the disposition of the demonstrations themselves. That is, those propositions are alwa; finat. to be demonste:ted, which furnish principles of reasming in others; it beinc upon the certamy of the princibles made use of, that the ceitainty of the truths dedued from them depends. And since even the different branches and rivisions of science have a near connexion amoner themselves, in:somuch that the knowledge of one is often presupposed in another; great care must be taken to adjust the several parts with an ere 1 this dependence, that those my always come frot in cedce, whence the flostulata of demonstration in others are borrowed.

Sec. KXIX.--- Why the methot herc cat.umed is called the method of science.

In this way of putting tonsther our thoushts, it is c vident at inst sisht, that however far we carry our resoribes, scimer and cortuinw will still attend us.--Bet what is particularly elegint and happy in the method now explained, we heriv see tnowledre rising out of its fist clements, and disccmandi:ctiy how
those elements are combined and interwoven, in order to the erecting a goodly structure of truth. Experience furnishes us wit'l simple ideas and their names, which are the primary materials of thinking and communication. Definitions teach how to unite and bind these ideas together, so as to form them into complex notions of various orders and degres. The general principles premised in science exhibit to the understanding such intuitive and fundamental truths, as express the immediate relations between our ideas, and constitute the ultimate ground of certainty. Demonstrations linis known and estabiished trutis togetherin such manner, that they necessarily lead to others which are unknown and remote. In fine, the duly adjusting the several branches of science, and the demonstrations in every branch, lays knowledere so open to the mind, that we see the paits of it growing one out of another, and embrace them with full conriction and assurance. Thus are we gradiually led from simple ideas, through all the windings and labyrinths of truth, until we at length reach the highcst and most exalted discoveries of human reason. It is true, the metzod here laid down hath hitherto been ubserved strictly only amons mathemadicians; and is therefore by many thought to be peculiar to number and magnitude. But it appears evidently from what we have sa:d above, that it may be equally applied in all such other parts of knowledge as regard the abstract ideas of tie mind, and the celations sebsisting between them. Ard since, wherever it is applied, it necassainiy begets scienace and cirlainty, we bave honce chosen to denominate it the method of acience, the better to intinate its true nature and extent.

FINIS.

Whiting, Backus \& Whiting,

 Have constaitly for Sole, at the Albany Book-Store, No. 45, State-strect, and at their several Stcres in Schenectady, Ctica and Canandaiguk,A large and Gencral Assortment of B O O K S,
in the various branches of isceful and polite Leterature ; montier what Extensive Asoment of Classical and School Books, which will be sold on the most reasenable termsAmongst whicn are the following:

A
dars' Latin Grammar, Lecturs, Alexander's Introduction,

-- Elenients, ———Viryl Exg Prose,
American Preceptor,
 Ashe's llictinary, -_Granmar,
Art of Reading,

- Speakiar,

Besa's Latin Tcsanent, Burn's Gramriar, Broohe's Cacetter,

Railes's Dictionary,
Buye:sis. French \& English,
Binghave's Col. Orator,
-_- Amer. Preceptor,
————.- Young Ladies A:-
cinconce,
Bossut'c Mathematios,
Bonn; cas.le’s Algebra,
Clark's Homer,
——Ovid,

- Intraduction,
—— Aerp, Latin,
—__rinoner's Illiad,
Con?
Cornelius Nepos,
Crch rell's Trigonometry,
Charebaud's Diciomary,
Exercises,
Ciserios Orations,
Demosthencs' Crations,
Davidson's Virgit,

Dilworth's Assistant,
Dwight's Gcography; Duncan's Cicero,
-—— Logic, Daua's Selections, Erasmus, Enficld's Speaker, Euclid's Elements, Epicteius, Greek, Eafield's Philesophy, Frumis' Horace, Fishols Arilimetic, I'ench Dictimary,
Fen's Physical World, Guintes Grammar, Greet Testaments,
---- Grammars,
--- Lexicons,
Crordon's Accountant,
\#utchinson's Xenophon,
Hendrick's System of Phlosophy,
IIutton's Book-Kesping, Homer's Iiliad,
Horace Delphini,
Johnson's Dictionary, 2v. 4to.
Livy, with Translations,

- Common School Copy,

Longinus on the Sublime,
Lucian's Dialogues,
Mair's Introduction,
__Book-Keeping,
Morse'sUniversalGeography, do. abridged,
——Elements of do.

Nolite Education,
Novum Testamentum,
Ovid's Metamorphosis,
Ovidii Nasonis,
Perrin's Telemaque, French and English,
Paley's Philosophy, Horx Paulinx,
Perrin's Exercises,

- --. Fables,
----Grammar,
Priestly's Lectures,
Pearce's Longinus,
Pike's Hcbrew Lexicon,
Parl harst's Greek Lexicon,
Pike's Arithmetic,
--- do. abridsed,
Ross' Latin Graminar,
Rigg's do.
Selectae e Veteri,
-_-e Profanis, Scott's Recuel, Salmon's Grammar,
Simpson's Euclid, Schrevilli Lexicon,
Smart's Horace, Sheridan's Dictionary, Saunderson's Algebra, Tully De Officis, Telemaque,
Terentii Delphini, Ward's Latin Grammar, Walker's Geography, Dictionary.

[^0]: And hat it is ceg to account for what to some writss has a.jeared a very ricat paradox ; that mat.y of tix justi innotount inentions in human life

